Single Chamber Membrane Less Microbial Fuel Cell for Simultaneous Energy Generation and Lead Removal

A. Sumisha A. Sumisha , V. Harshini V. Harshini , Asmita Das Asmita Das , K. Haribabu K. Haribabu
Российский электрохимический журнал
Abstract / Full Text

In this study, the performance of a single chamber membrane less microbial fuel cell with an iodine-doped polypyrrole-coated graphite felt anode that uses lead as the electron acceptor at the cathode was studied. The removal oflead for concentrations viz, 10, 20, and 30 ppm, were studied using pure culture of Shewanella putrefaciens and removal of above 85% was obtained at anaerobic conditions. The maximum possible power density, coloumbic efficiency, and TOC removal at 20 ppm Pb (maximum tolerable concentration) were obtained as 2.32 W/m2, 17.797 and 93.3%, respectively. A closed circuit voltage of 0.779 V was attained using a mixed culture for 20 ppm Pb and was found to be higher than that of the pure culture (0.752 V). These results show that wastewater containing heavy metal can be treated in microbial fuel cells with simultaneous energy generation.

Author information
  • Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, India

    A. Sumisha, V. Harshini, Asmita Das & K. Haribabu

  1. Abourached, C., Catal, T., and Liu, H., Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production, Water Res., 2014, vol. 51, p. 228. https://doi.org/10.1016/j.watres.2013.10.062
  2. Xia, C., Zhang, D., and Pedrycz, W., Models for microbial fuel cells: a critical review, J. Power Sources, 2018, vol. 373, p. 119. https://doi.org/10.1016/j.jpowsour.2017.11.001
  3. Islam, M.A., Ethiraj, B., and Cheng, C.K., Electrogenic and antimethanogenic properties of bacillus cereus for enhanced power generation in anaerobic sludge-driven microbial fuel cells, Energy Fuels, 2017, vol. 31, p. 6132. https://doi.org/10.1021/acs.energyfuels.7b00434
  4. Behera, M. and Ghangrekar, M.M., Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH, Bioresour. Technol., 2009, vol. 100, p. 5114. https://doi.org/10.1016/j.biortech.2009.05.020
  5. Das, S. and Mangwani, N., Recent developments in microbial fuel cells: a review, J. Sci. Ind. Res. (India), 2010, vol. 69, p. 727
  6. Reguera, G., Nevin, K.P., and Nicoll, J.S., Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells, Appl. Environ. Microbiol., 2006, vol. 72, p. 7345. https://doi.org/10.1128/AEM.01444-06
  7. Bond, D.R., Holmes, D.E., and Tender, L.M., Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 2002, vol. 295, p. 483. https://doi.org/10.1126/science.1066771
  8. Kim, B.H., Ikeda, T., and Park, H.S., Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors, Biotechnol. Tech., 1999, vol. 13, p. 475. https://doi.org/10.1023/A:1008993029309
  9. Kim, H.J., Park, H.S., and Hyun, M.S., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol., 2002, vol. 30, p. 145. https://doi.org/10.1016/S0141-0229(01)00478-1
  10. Kim, B.H., Park, H.S., and Kim, H.J., Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol., 2004, vol. 63, p. 672. https://doi.org/10.1007/s00253-003-1412-6
  11. Rabaey, K., Ossieur, W., and Verhaege, M., Continuous microbial fuel cells convert carbohydrates to electricity, Water Sci. Technol., 2005, vol. 52, p. 515.
  12. Mustakeem, Electrode materials for microbial fuel cells: nanomaterial approach, Mater. Renewable Sustainable Energy, 2015, vol. 4, p. 1. https://doi.org/10.1007/s40243-015-0063-8
  13. Jadhav, U. and Hocheng, H., Hydrometallurgical recovery of metals from large printed circuit board pieces, Sci. Rep., 2015, vol. 5, p. 1. https://doi.org/10.1038/srep14574
  14. Junxian, H., Zhongliang, and Peiyuan, Z., A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes, J. Power Sources, 2012, vol. 224, p. 139. https://doi.org/10.1016/j.jpowsour.2012.09.091
  15. Li, X.G., Li, J., and Huang, M.R., Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles, Eur. J. Chem. A, 2009, vol. 15, p. 6446. https://doi.org/10.1002/chem.200900181
  16. Sumisha, A. and Haribabu, K., Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications—a comparative study, Int. J. Hydrogen Energy, 2018, vol. 43, p. 3308. https://doi.org/10.1016/j.ijhydene.2017.12.175
  17. Mathuriya, A.S. and Yakhmi, J.V., Microbial fuel cells to recover heavy metals, Environ. Chem. Lett., 2014, vol. 12, p. 483. https://doi.org/10.1007/s10311-014-0474-2
  18. Li,Y., Wu, Y., and Puranik, S., Metals as electron acceptors in single-chamber microbial fuel cells, J. Power Sources, 2014, vol. 269, p. 430. https://doi.org/10.1016/j.jpowsour.2014.06.117
  19. Sahoo, S., Dhibar, S., and Das, C.K., Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes, Express Polym. Lett., 2012, vol. 6, p. 965. https://doi.org/10.3144/expresspolymlett.2012.102
  20. Liu, Z., Poyraz, S., and Liu, Y., Seeding approach to noble metal decorated conducting polymer nanofiber network, Nanoscale, 2012, vol. 4, p. 106. https://doi.org/10.1039/c1nr10994d
  21. Bazaka, K. and Jacob, M., Effects of iodine doping on optoelectronic and chemical properties of polyterpenol thin films., Nanomaterials, 2017, vol. 7, p. 11. https://doi.org/10.3390/nano7010011
  22. Yuan, H., Hou, Y., and Abu-Reesh, I.M., Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review, Mater. Horizons, 2016, vol. 3, p. 382. https://doi.org/10.1039/c6mh00093b
  23. Wu, Y., Zhao, X., and Jin, M., Copper removal and microbial community analysis in single-chamber microbial fuel cell, Bioresour. Technol., 2018, vol. 253, pp. 372–377. https://doi.org/10.1016/j.biortech.2018.01.046
  24. Singh, S., Modi, A., and Verma, N., Enhanced power generation using a novel polymer-coated nanoparticles dispersed-carbon micro-nanofibers-based air-cathode in a membrane-less single chamber microbial fuel cell, Int. J. Hydrogen Energy, 2015, vol. 41, p. 1237. https://doi.org/10.1016/j.ijhydene.2015.10.099
  25. Praveena, G. and Indumathi, M.N., Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell, Water Sci. Tech., 2015, vol. 71, no. 3, p. 353. https://doi.org/10.2166/wst.2014.524
  26. Zhang, B.G., Zhou, S.G., Zhao, H.Z., Shi, C.H., Kong, L.C., Sun, J.J., Yang, Y., and Ni, J.R., Factors affecting the performance of microbial fuel cells for sulfide and vanadium(V) treatment, Bioprocess Biosyst. Eng., 2010, vol. 33, p. 194.
  27. Wang, Y.H., Wang, B.S., Pan, B., Chen, Q.Y., and Yan, W., Electricity production from a bio-electrochemical cell for silver recovery in alkaline, Appl. Energy, 2013, vol. 112, p. 1337.
  28. Liping, H., Binglin, Y., Dan, W., and Xie, Q., Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell – microbial electrolysis cell systems, J. Power Sources, 2014, vol. 25, p. 54.
  29. Tian-shun, S., Yuejuan, J., Jingjing, B., Dongzhou, K., and Jingjing, X., Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell, J. Hazard. Mater., 2016, vol. 317, pp. 73–80. http://dx.doi.org/doi:10.1016/j.jhazmat.2016.05.055
  30. Gupta, S., Ashish, Y., and Nishith, V., Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina–nickel nanoparticles-dispersed carbon nanofiber electrode, Chem. Eng. J., 2016, vol. 307, pp. 729–738.
  31. Kim, C., Cho Rong, L., Young Eun, S., Jinhee, H., Sung, M., Dong-Ha, L., Jaehoon, C., Chulhwan, P., Min, J., and Jung Rae, K., Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating, Chem. Eng. J., 2017, vol. 328, no. 15, pp. 703–707. https://doi.org/10.1016/j.cej.2017.07.077
  32. Wu, Y., Zhao, X., Jin, M., Li, Y., Li, S., and Kong, F., Copper removal and microbial community analysis in single-chamber microbial fuel cell, Bioresour Technol., 2018, vol. 253, p. 372.https://doi.org/10.1016/j.biortech.2018.01.046
  33. Rajkumar, R., Gnana Prakash, D.M., Haribabu, K, and Sumisha, A., A study on polythiophene modified carbon cloth as anode in microbial fuel cell for lead removal, Arab. J. Sci. Eng., 2021, no. 7. https://doi.org/10.1007/s13369-356021-05402-3