Interaction between Thallium and the Au(111) Surface. Quantum-Chemical Analysis

N. A. Rogozhnikov N. A. Rogozhnikov
Российский электрохимический журнал
Abstract / Full Text

The interaction between thallium atoms and the Au(111) surface is studied using the cluster metal surface model and the density functional method. An adsorbed thallium atom forms a strong chemical bond with surface gold atoms. The adsorption energy barely depends on the location of the thallium atom. The electron density is appreciably displaced from thallium to gold in the process of adsorption. Thallium exists on the surface in the cationic form. The analysis of the density of state (DOS) spectra demonstrates that the atomic orbitals of thallium participate in the formation of lower molecular orbitals in the thallium–gold system when the surface is slightly filled with thallium. When the surface is filled to a substantial degree, the contribution of thallium to the molecular orbitals with the least negative energy appreciably grows. The possible change in the electronic work function upon the surface modification of gold with the adsorbed thallium is estimated.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630128, Russia

    N. A. Rogozhnikov

  • Novosibirsk State Technical University, Novosibirsk, 630073, Russia

    N. A. Rogozhnikov

  1. Adžić, R.R. and Despić, A.R., Catalytic effect of metal adatoms deposited at underpotential, J. Chem. Phys., 1974, vol. 61, no. 8, pp. 3482–3483.
  2. Petrii, O.A. and Lapa, A.S., Electrochemistry of adatomic layers, in Itogi Nauki Tekh., Ser.: Elektrokhim., Polukarov, Yu.M., Ed, Moscow: VINITI, 1987, vol. 24, pp. 96–153.
  3. Rodes, A., Feliu, J.M., Aldaz, A., and Clavilier, J., The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III)/Cr(II), J. Electroanal. Chem. Interfacial Electrochem.,1989, vol. 271, nos. 1–2, pp. 127–139.
  4. Chen, C.H., Washburn, N., and Gewirth, A.A., In situ atomic force microscope study of Pb underpotential deposition on Au(111): Structural properties of the catalytically active phase, J. Phys. Chem., 1993, vol. 97, no. 38, pp. 9754–9760.
  5. Wang, J.X., Adzic, R.R., Magnussen, O.M., and Ocko, B.M., Structural evolution during electrocrystallization: deposition of Tl on Ag (100) from monolayer to bilayer and to bulk crystallites, Surf. Sci., 1995, vol. 344, nos. 1–2, pp. 111–121.
  6. Ball, M., Lucas, C.A., Markovic, N.M., Murphy, B.M., Steadman, P., Schmidt, T.J., Stamenkovic, V., and Ross, P.N., X-ray scattering studies of irreversibly adsorbed bismuth on the Pt(111) electrode surface, Langmuir, 2001, vol. 17, no. 19, pp. 5943–5946.
  7. Adžić, R.R., Wang, J., and Ocko, B.M., Structure of metal adlayers during the course of electrocatalytic reactions: O2 reduction on Au(111) with Tl adlayers in acid solutions, Electrochim. Acta, 1995, vol. 40, no. 1, pp. 83–89.
  8. Pošcus, D., Agafonovas, G., and Jurgaitiene̊, I., Effect of thallium ions on the adsorption of cyanide-containing species from cyanide and dicyanoaurate solutions on a polycrystalline gold electrode, J. Electroanal. Chem., 1997, vol. 425, nos. 1–2, pp. 107–115.
  9. Gojo, M., Stanković, V.D., and Poljaček, S.M., Electrochemical deposition of gold in citrate solution containing thallium, Acta Chim. Slov., 2008, vol. 55, pp. 333–337.
  10. McJntyre, J.D.E. and Peck, W.F., Electrodeposition of gold: depolarization effects induced by heavy metal ions, J. Electrochem. Soc., 1976, vol. 123, no. 12, pp. 1800–1813.
  11. Bek, R.Yu., Zelinskii, A.G., Ovchinnikova, S.N., and Vais, A.A. Catalytic activity of thallium, lead, and bismuth adatoms in the gold dissolution reaction in cyanide solutions: A comparative characterization, Russ. J. Electrochem., 2004, vol. 40, no. 2, pp. 123–129.
  12. Nicol, M.J., The anodic behaviour of gold. Part II—Oxidation in alkaline solutions, Gold Bull., 1980, vol. 13, no. 3, pp. 105–111.
  13. Bek, R.Yu., Comparison of catalytic activity of thallium and lead adatoms at the gold electrodeposition and dissolution in cyanide solutions, Russ. J. Electrochem., 2008, vol. 44, no. 9, pp. 1078–1082.
  14. Kolb, D.M., Leutloff, D., and Przasnyski, M., Optical properties of gold electrode surfaces covered with metal monolayers, Surf. Sci., 1975, vol. 47, no. 2, pp. 622–634.
  15. Schultze, J.W. and Dickertmann, D., Potentiodynamic desorption spectra of metallic monolayers of Cu, Bi, Pb, Tl, and Sb adsorbed at (111), (100), and (110) planes of gold electrodes, Surf. Sci., 1976, vol. 54, no. 2, pp. 489–505.
  16. Niece, B.K. and Gewirth, A.A., Potential-step chronocoulometric and quartz crystal microbalance investigation of underpotentially deposited Tl on Au(111) electrodes, J. Phys. Chem. B, 1998, vol. 102, no. 5, pp. 818–823.
  17. Polewska, W., Wang, J.X., Ocko, B.M., and Adzic, R.R., Scanning tunneling microscopy of electrodeposited thallium monolayers on Au(111) in alkaline solution, J. Electroanal. Chem., 1994, vol. 376, nos. 1–2, pp. 41–47.
  18. Toney, M.F., Gordon, J.G., Samant, M.J., Borges, G.L., Melroy, O.L., Yee, D., and Sorensen, L.B., In-situ atomic structure of underpotentially deposited monolayers of Pb and T1 on Au(111) and Ag(111): A surface X-ray scattering study, J. Phys. Chem., 1995, vol. 99, no. 13, pp. 4733–4744.
  19. Wang, J.X., Adžić, R.R., Magnussen, O.M., and Ocko, B.M., Structure of electrodeposited Tl overlayers on Au(100) studied via surface X-ray scattering, Surf. Sci., 1995, vol. 335, pp. 120–128.
  20. Hansen, M., and Anderko, K., Constitution of Binary Alloys, New York: McGraw-Hill, 1958.
  21. State Diagrams of Binary Metallic Systems, Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996. vol. 1.
  22. Kuznetsov, A.M., Korshin, G.V., and Saifullin, A.R., Quantum-chemical investigation of the adsorption of thallium on metals of the copper subgroup, Sov. Electrochem., 1990, vol. 26, p. 606.
  23. Bicelli, L.P., Bozzini, B., Mele, C., and D’Urzo, L., A review of nanostructural aspects of metal electrodeposition, Int. J. Electrochem. Sci., 2008, vol. 3, no. 4, pp. 356–408.
  24. Liu, F.L., Zhao, Y.F., Li, X.Y., and Hao, F.Y., Ab initio study of the structure and stability of MnTln (M = Cu, Ag, Au; n = 1, 2) clusters, J. Mol. Struct.: THEOCHEM, 2007, vol. 809, nos. 1–3, pp. 189–194.
  25. Pershina, V., Anton, J., and Jacob, T., Electronic structures and properties of MAu and MOH, where M = Tl and element 113, Chem. Phys. Lett., 2009, vol. 480, nos. 4–6, pp. 157–160.
  26. Pershina, V., Borschevsky, A., Anton, J., and Jacob, T., Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold, J. Chem. Phys., 2010, vol. 133, no. 10, p. 104304.
  27. Zaitsevskii, A, Titov, A.V., Rusakov, A.A., and van Wüllen, C., Ab initio study of element 113–gold interactions, Chem. Phys. Lett., 2011, vol. 508, nos. 4–6, pp. 329–331.
  28. Fox-Beyer, B.S. and van Wüllen, C., Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials, Chem. Phys., 2012, vol. 395, pp. 95–103.
  29. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.
  30. König, S., Gäggler, H.W., Eichler, R., Haenssler, F., Soverina, S., Dressler, R., Friedrich, S., Piguet, D., and Tobler, R., The Production of Long-Lived Thallium-Isotopes and Their Thermochromatography Studies on Quartz and Gold, PSI Annual Report 2005, Bern: Paul Scherrer Institut, 2006.
  31. Muther, B., Eichler, R., and Gäggeler, H. W., Thermochormatography of 212Pb and 200–202Tl on Quartz and Gold, PSI Annual Report 2007, Bern: Paul Scherrer Institut, 2008.
  32. Serov, A., Eichler, R., Türler, A., Wittwer, D., Gäggeler, H.W., Dressler, R., Piguet, D., and Vögele, A., Interaction of Thallium Species with Quartz and Gold Surfaces, PSI Annual Report 2010, Bern: Paul Scherrer Institut, 2011.
  33. Serov, A., Eichler, R., Dressler, R., Piguet, D., Türler, A., Vögele, A., Wittwer, D., and Gäggeler, H.W., Adsorption interaction of carrier-free thallium species with gold and quartz surfaces, Radiochim. Acta, 2013, vol. 101, no. 7, pp. 421–426.
  34. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, vol. 14, no. 11, pp. 1347–1363.
  35. Neese, F., The ORCA program system, WIREs Comput. Mol. Sci., 2012, vol. 2, no. 1, pp. 73–78.
  36. Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001.
  37. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648–5652.
  38. Stephens, P.J, Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, no. 45, pp. 11623–11627.
  39. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, vol, 82, no. 1, pp. 299–310.
  40. Weinhold, F., Natural bond orbital method, in Encyclopedia of Computational Chemistry, Schleyer, P.V.R., Allinger, N.L., Clark T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., and Schreiner, P.R., Eds., Chichester: Willey, 1998. vol. 3, pp. 1792–1811.
  41. Glendening, E.D., Landis, C.R., and Weinhold, F., Natural bond orbital methods, WIREs Comput. Mol. Sci., 2012, vol. 2, no. 1, pp. 1–42.
  42. Titmuss, S., Wander, A., and King, D.A., Reconstruction of clean and adsorbate-covered metal surfaces, Chem. Rev., 1996, vol. 96, no. 4, pp. 1291–1306.
  43. Pierce, M.S., Chang, K.-C., Hennessy, D.C., Komanicky, V., Menzel, A., and You, H., CO-induced lifting of Au(001) surface reconstruction, J. Phys. Chem. C, 2008, vol. 112, no. 7, pp. 2231–2234.
  44. Dobson, P.J., The surface structure of gold, Gold Bull., 1974, vol. 7, no. 1, pp. 15–19.
  45. Greenwood, N.N. and Earnshow, A., Chemistry of Elements, Oxford: Butterworth-Heinemann, 1998.
  46. Boys, S.F. and Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, vol. 19, no. 4, pp. 553–566.
  47. Jensen, F., Introduction to Computational Chemistry, Chichester: Wiley, 2007.
  48. Emsley, J., The Elements, Oxford: Clarendon Press, 1991.
  49. Stepanov, N.F., Kvantovaya mekhanika i kvantovaya khimiya (Quantum Mechanics and Quantum Chemistry), Moscow: Mir, 2001.
  50. O’Boyle, N.M., Tenderholt, A.L., and Langner, K.M., CCLIB: a library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, vol. 29, no. 5, pp. 839–845.
  51. Roberts, M.W. and McKee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon Press, 1978.
  52. Verhoef, R.W., and Asscher, M., The work function of adsorbed alkalis on metals revisited: a coverage-dependent polarizability approach, Surf. Sci., 1997, vol. 391, nos. 1–3, pp. 11–18.
  53. Young, D.C., Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, New York: Wiley, 2001.
  54. Clark, T., Quantum mechanics, in Chemoinformatics: A textbook, Gasteiger, J. and Engel, T., Eds., Weinheim: Wiley-WCH, 2003, ch. VII.2, pp. 947–976.
  55. Nazmutdinov, R.R., Zinkicheva, T.T., Probst, M., Lust, K., and Lust, E., Adsorption of halide ions from aqueous solutions at a Cd(0001) electrode surface: quantum chemical modelling and experimental study, Surf. Sci., 2005, vol. 577, nos. 2–3, pp. 112–126.
  56. Ivaništšev, V., Nazmutdinov, R.R., and Lust, E., Density functional theory study of the water adsorption at Bi(111) electrode surface, Surf. Sci., 2010, vol. 604, nos. 21–22, pp. 1919–1927.
  57. Ivaništšev, V., Nazmutdinov, R.R., and Lust, E., A comparative DFT study of the adsorption of H2O molecules at Bi, Hg, and Ga surfaces, Surf. Sci., 2013, vol. 609, pp. 91–99.
  58. Chiarotti, G., The physics of solid surface, in Springer Handbook of Condensed Matter and Materials Data, Martienssen, W. and Warlimont, H., Eds., Berlin: Springer, 2005, ch. 5.2, pp. 979–1030.
  59. Fall, C., Ab initio study of the work functions of elemental metal crystals, Ph.D. Thesis, Lausanne: École Politechnique Fédérale de Lausanne, 1999.
  60. Shakirova, S.A. and Serova, E.V., Work function measurements of Gd/W(111) with and without silicon interface layers: field emission study, Surf. Sci., 1999, vol. 422, nos. 1–3, pp. 24–32.
  61. Feydt, J., Elbe, A., Engelhard, H., Meister, G., and Goldmann, A., Photoemission studies of the W(110)/Ag interface, Surf. Sci., 2000, vol. 452, nos. 1–3, pp. 33–43.
  62. Binns, C. and Norris, C., The epitaxial growth of thallium on copper (100): A study by LEED, AES, UPS and EELS, Surf. Sci., 1982, vol. 115, no. 2, pp. 395–416.
  63. Martienssen, W., The elements, in Springer Handbook of Condensed Matter and Materials Data, Martienssen, W. and Warlimont, H., Eds., Berlin: Springer, 2005, pp. 41–43.