Examples



mdbootstrap.com



 
Статья
2022

Supramolecular Structure and Hydrogen Bonding of N,N′-Bis(trifluoromethylsulfonyl)amides of Dicarboxylic Acids


N. N. ChipaninaN. N. Chipanina, L. L. TolstikovaL. L. Tolstikova, B. A. ShainyanB. A. Shainyan
Российский журнал общей химии
https://doi.org/10.1134/S1070363222080102
Abstract / Full Text

Quantum-chemical DFT simulation of N,N’-bis(trifluoromethylsulfonyl)amides of dicarboxylic acids TfNHСO(CH2)nCONHTf (n = 0–3) has allowed evaluation of their ability to form intramolecular NH···О=C or NH···О=S hydrogen bonds depending on the length of the carbon chain (CH2)n. Self-associates forming the supramolecular structure in the gas phase have been cyclic dimers with intermolecular NH···О=C or NH···О=S hydrogen bonds, containing no intramolecular H-bonds. According to IR spectroscopy data, the compounds with n = 3, 4 have formed self-associates with the NH···О=C bonds in the solid state.

Author information
  • A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, RussiaN. N. Chipanina, L. L. Tolstikova & B. A. Shainyan
References
  1. Konovalova, S.A., Avdeenko, A.P., and Santalova, A.A., Russ. J. Org. Chem., 2021, vol. 57, p. 551. https://doi.org/10.1134/S1070428021040084
  2. Nagalakshmamma, V., Varalakshmi, M., Umapriya, K., Venkataswamy, M., Venkataramaiah, C., Raju, K.T., Chalapathi, P.V., and Raju, C., J. Chin. Chem. Soc., 2020, vol. 67, p. 1289. https://doi.org/10.1002/jccs.201900434
  3. Shafique, M., Hameed, S., Naseer, M.M., and Al-Masoudi, N.A., Mol. Divers., 2018, vol. 22, p. 957. https://doi.org/10.1007/s11030-018-985
  4. Saha, T., Hossain, M.S., Saha, D., Lahiri, M., and Talukdar, P., J. Am. Chem. Soc., 2016, vol. 138, p. 7558. https://doi.org/10.1021/jacs.6b01723
  5. Tolstikova, L.L., Shainyan, B.A., Sterkhova, I.V., and Belovezhets, L.A., Russ. J. Org. Chem., 2020, vol. 56, p. 63. https://doi.org/10.1134/S107042802001011X
  6. Ghosh, K., Sarkar, T., Samadder, A., and Khuda-Bukhsh, A.R., New J. Chem., 2012, vol. 36, p. 2121. https://doi.org/10.1039/C2NJ40391A
  7. Kelly, J.K., Henderson, W., and Nicholson, B.K., Polyhedron, 2007, vol. 26, p. 434. https://doi.org/10.1016/j.poly.2006.06.036
  8. Bisai, A., Prasad, B.A.B., and Singh, V.K., Arkivoc, 2007, p. 20. https://doi.org/10.3998/ark.5550190.0008.503
  9. Corey, E.J., Sarshar, S., and Lee, D.-H., J. Am. Chem. Soc., 1994, vol. 116, p. 12089. https://doi.org/10.1021/ja00105a074
  10. Corey, E.J. and Letaric, M.A., J. Am. Chem. Soc., 1995, vol. 117, p. 9616. https://doi.org/10.1021/ja00142a051
  11. Cortez, N.A., Aguirre, G., Parra-Hake, M., and Somanathan, R., Tetrahedron Lett., 2009, vol. 50, p. 2228. https://doi.org/10.1016/j.tetlet.2009.02.183
  12. Chanawanno, K., Holstrom, C., Crandall, L.A., Dodge, H., Nemykin, V.N., Herrick, R.S., and Ziegler, C.J., Dalton Transact., 2016, vol. 45, p. 14320. https://doi.org/10.1039/C6DT02669A
  13. White, D.J., Cronin, L., Parsons, S., Robertson, N., Tasker, P.A., and Bisson, A.P., Chem. Commun., 1999, p. 1107. https://doi.org/10.1039/A902196E
  14. Squires, C., Baxter, C.W., Campbell, J., Lindoy, L.F., McNab, H., Parkin, A., Parsons, S., Tasker, P.A., Wei, G., and White, D.J., Dalton Transact., 2006, p. 2026. https://doi.org/10.1039/B515650P
  15. Trepka, R.D., Harrington, J.K., and Belisle, J.W., J. Org. Chem., 1974, vol. 39, p. 1094. https://doi.org/10.1021/jo00922a017
  16. Shainyan, B.A. and Tolstikova, L.L., Chem. Rev., 2013, vol. 113, p. 699. https://doi.org/10.1021/cr300220h
  17. Haas, A., Klare, C., Betz, P., Bruckmann, J., Krüger, C., Tsay, Y.-H., and Aubke, F., Inorg. Chem., 1996, vol. 35, p. 1918. https://doi.org/10.1021/ic9507934
  18. Sterkhova, I.V., Mescheryakov, V.I., Chipanina, N.N., Kukhareva, V.A., Aksamentova, T.N., Turchaninov, V.K., and Shainyan, B.A., Russ. J. Gen. Chem., 2006, vol. 76, p. 583. https://doi.org/10.1134/S1070363206040165
  19. Oznobikhina, L.P., Chipanina, N.N., Tolstikova, L.L., Bel’skikh, A.V., Kukhareva, V.A., and Shainyan, B.A., Russ. J. Gen. Chem., 2009, vol. 79, p. 435. https://doi.org/10.1134/S1070363209030165
  20. Fatima, M., Liaqat, F., Shabbir, M., Ahmad, I., Akhter, Z., Fatima, R., and Yousaf, S., J. Mol. Struct., 2021, vol. 1239, p. 130471. https://doi.org/10.1016/j.molstruc.2021.130471
  21. Żabiński, J., Maciejewska, D., and Kaźmierczak, P., J. Mol. Struct., 2009, vol. 923, p. 132. doi. https://doi.org/10.1016/j.molstruc.2009.02.015
  22. Remko, M., Herich, P., Gregán, F., and Kožisek, J., J. Mol. Struct., 2014, vol. 1059, p. 124. https://doi.org/10.1016/j.molstruc.2013.11.047
  23. Hubbard, T.A., Brown, A.J., Bell, I.A.W., and Cockroft, S.L., J. Am. Chem. Soc., 2016, vol. 138, p. 15114. https://doi.org/10.1021/jacs.6b09130
  24. Chipanina, N.N., Oznobikhina, L.P., Sterkhova, I.V., Ganin, A.S., and Shainyan, B.A., J. Mol Struct., 2020, vol. 1219, p. 128534. https://doi.org/10.1016/j.molstruc.2020.128534
  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, Y., Honda, O., Kitao, H., Nakai, M., Klene, Li, X., Knox, J.E., Hratchian, J.B., Cross, T., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 09, Revision E.01, Gaussian, Inc., Pittsburgh, PA, 2009.