Examples



mdbootstrap.com



 
Статья
2017

Electrochemistry of Gala apples: Memristors in vivo


A. G. Volkov A. G. Volkov , V. S. Markin V. S. Markin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517090166
Abstract / Full Text

Leon Chua postulated the memristor, a resistor with memory, in 1971 and the first solid-state memristor was built in 2008. Recently, we found memristors in vivo as components of plasma membranes in plants, fruits, roots and seeds. A memristor is a nonlinear element; its current–voltage characteristic is similar to that of a Lissajous pattern. The analysis of presence of memristors in apple fruits is based on cyclic voltammetric characteristics at different frequencies of bipolar voltage waves. The electrostimulation of apple fruits by bipolar periodic triangular or sinusoidal voltage waves induces electrical responses with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of K+ ion channels, transforms memristors to resistors in apple fruits. Memristive properties of apple fruits are linked to the properties of voltage gated K+ ion channels. The shape of cyclic voltammograms depends on frequency bipolar triangular or sinusoidal waves. The analytical model of a memristor with a capacitor connected in parallel exhibits different characteristic behavior at low and high frequency of applied voltage, which is the same as experimental data obtained by cyclic voltammetry in vivo. The discovery of memristors in fruits creates a new direction in the modeling and understanding of electrochemical phenomena in fruit ion channels and structures.

Author information
  • Department of Chemistry, Oakwood University, Huntsville, AL, 35896, USA

    A. G. Volkov

  • Department of Neurology, University of Texas, Southwestern Medical Center, Dallas, TX, 75390-8813, USA

    V. S. Markin

References
  1. Levich, V.G., Course of Theoretical Physics, vol. 1, Moscow: Nauka, 1969, p. 910.
  2. Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Electrodynamics of Continuous Media, 2nd ed., Oxford: Butterworth-Heinemann, 1999, p. 460.
  3. Vdovin, Yu.A., Levich, V.G., and Myamlin, V.A., Voltampere characteristics of an electrolyte-electronic semiconductor contact, Dokl. Akad. Nauk SSSR, 1959, vol. 124, p. 350.
  4. Levich, V.G. and Grafov, B.M., Alternating current in a binary electrolyte, Dokl. Akad. Nauk SSSR, 1962, vol. 146, p. 398.
  5. Chua, L., Memristor–The missing circuit element, IEEE Trans. Circuit Theory, 1971, vol. 18, p. 507.
  6. Chua, L., If it’s pinched, it’s a memristor, Semicond. Sci. Technol., 2014, vol. 29, p. 104001.
  7. Volkov, A.G., Tucket, C., Reedus, J., Volkova, M.I., Markin, V.S., and Chua, L., Memristors in plants, Plant Signal. Behav., 2014, vol. 9, p. e28152-1–8.
  8. Jacobsen, T., Zachau-Christiansen, Bay, L., and Jorgensen, M.J., Hysteresis in the solid oxide fuel cell cathode reaction, Electrochim. Acta, 2001, vol. 46, p. 1019.
  9. MacVittie, K. and Katz, E., Electrochemical systems with memimpedance properties, J. Phys. Chem. C, 2013, vol. 117, p. 24943.
  10. Gale, E., Adamatsky, A., and Costello, B.D.L., Are slime moulds living memristors?, arXiv2013.1306.3414v1.
  11. Johnsen, G.K., Lutken, C.A., Martinsen, O.G., and Grimnes, S., Memristive model of electro-osmosis in skin, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys., 2011, vol. 83, p. 031916.
  12. Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S., The missing memristor found, Nature, 2008, vol. 453, p. 80.
  13. Pershin, Y.V., La Fontaine, S., and Ventra, M.Di., Memristive model of amoeba learning, Phys. Rev. E, 2009, vol. 80, p. 021926.0.
  14. MacVittie, K. and Katz, E., Self-powered electrochemical memristor based on a biofuel cell–Towards memristors integrated with biocomputing systems, Chem. Commun., 2014, vol. 50, p. 4816.
  15. Chua, L., Sbitnev, V., and Kim, H., Hodgkin-Huxlew axon is made of memristors, Int. J. Bifurcation Chaos, 2012, vol. 22, p. 1230011-1-48.
  16. Chua, L., Sbitnev, V., and Kim, H., Neurons are poised near the edge of chaos, Int. J. Bifurcation Chaos, 2012, vol. 22, p. 1250098-1-49.
  17. Sah, M., Kim, H., and Chua, L., Brains are made of memristors, IEEE Circuits Systems, 2014, vol. 14, p. 12.
  18. Volkov, A.G., Green plants: Electrochemical interfaces, J. Electroanal. Chem., 2000, vol. 483, p. 150.
  19. Volkov, A.G., O’Neal, L., Volkova, M.I., and Markin, V.S., Electrostimulation of Aloe vera L., Mimosa pudica L. and Arabidopsis thaliana: Propagation and collision of electrotonic potentials, J. Electrochem. Soc., 2013, vol. 160, p. G3102.
  20. Volkov, A.G., Forde-Tucket, V., Reedus, J., Mitchell, C.M., Volkova, M.I., Markin, V.S., and Chua, L., Memristors in the Venus flytrap, Plant Signal. Behav., 2014, vol. 9, p. e29204-1-12.
  21. Volkov, A.G., Nyasani, E.K., Blackmon, A.L., and Volkova, M.I., Memristors: Memory elements in potato tubers, Plant Signal. Behav., 2015, vol. 10, p. e1071750-1-7.
  22. Volkov, A.G., Reedus, J., Mitchell, C.M., Tuckett, C., Forde-Tuckett, V., Volkova, M.I., Markin, V.S., and Chua, L., Memristor in the electrical network of Aloe vera L., Plant Signal. Behav., 2014, vol. 9, p. e29056-1-7.
  23. Markin, V.S., Volkov, A.G., and Chua, L., An analytical model of memristors in plants, Plant Signal. Behav., 2014, vol. 9, p. e972887-1-9.
  24. Volkov, A.G., Reedus, J., Mitchell, C.M., Tuckett, C., Volkova, M.I., Markin, V.S., and Chua, L., Memory elements in the electrical network of Mimosa pudica L., Plant Signal. Behav., 2014, vol. 9, p. e982029-1-9.
  25. Volkov, A.G., Nyasani, E.K., Tuckett, C., Blackmon, A.L., Reedus, J., and Volkova, M.I., Cyclic voltammetry of apple fruits: Memristors in vivo, Bioelectrochem., 2016, vol. 112, p. 9.
  26. Zhang, L.Y., Peng, Y.B., Pelleschi-Travier, S., Fan, Y., Lu, Y.F., Lu, Y.M., Gao, X.P., Shen, Y.Y., Delrot, S., and Zhang, D.P., Evidence for apoplasmic phloem unloading in developing apple fruit, Plant Physiol., 2004, vol. 135, p. 574.
  27. Lang, A. and Ryan, K.G., Vascular development and sap flow in apple pedicels, Ann. Bot., 1994, vol. 74, p. 381.
  28. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S.K., Troggio, M., and Pruss, D., et al., The genome of the domesticated apple (Malus x domestica Borkh.), Nat. Genetics, 2010, vol. 42, p. 833.
  29. Kurenda, A., Pieczywek, P.M., Adamiak, A., and Zdunek, A., Effect of cytochalasin B, lantrunculin B, colchine, cycloheximid, dimethyl sulfoxide and ion channel inhibitors on biospeckle activity in apple tissue, Food Biophysics, 2013, vol. 8, p. 290.
  30. Levich, V.G., Mazur, N.G., and Markin, V.S., Impulse blocking in an electrochemical model of a nerve, Dokl. Akad. Nauk SSSR, 1971, vol. 198, p. 1214.
  31. Sah, M.Pd., Yang, C., and Kim, H., A generic model of memristors with parasitic components, IEEE Trans. Circuit Systems, 2015. doi 10.1109/TCSI.2014.2373674-1-8
  32. Hodgkin, A.L. and Rushton, W.A.H., The electrical constants of a crustacean nerve fibre, Proc. Royal Soc. B, 1946, vol. 133, p. 444.
  33. Rall, W., Time constants and electrotonic length of membrane cylinders and neurons, Biophys. J., 1969, vol. 9, p. 1483.
  34. Volkov, A.G. and Shtessel, Yu.B., Propagation of electrotonic potentials in plants: Experimental study and mathematical modeling, AIMS Biophysics, 2016, vol. 3, p. 358.
  35. Spanswick, R.M., Electrical coupling between cells of higher plants: A direct demonstration of intercellular communication, Planta, 1972, vol. 102, p. 215.
  36. Frachisse-Stoilskovic, J.M. and Julien, J.L., The coupling between extra-and intracellular electric potentials in Bidens pilosa L., Plant Cell Environ., 1993, vol. 16, p. 633.
  37. Overall, R.L. and Gunning, B.E.S., Intercellular communication in Azolla roots, II: Electrical coupling, Protoplasma, 1982, vol. 111, p. 151.
  38. Paula, S., Volkov, A.G., Van Hoek, A.N., Haines, T.H., and Deamer, D.W., Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness, Biophys. J., 1996, vol. 70, p. 339.
  39. Adhikaru, A.P., Sah, M.Pd., Kim, H., and Chua, L., The fingerprints of memristor, IEEE Trans. Circuits Systems, 2013. http://dx.doi.org/ doi 10.1109/TCSI.2013.325671. 10.1109/TCSI.2013.325671