Examples



mdbootstrap.com



 
Статья
2022

State-Specific Dynamic Study of the Exchange and Dissociation Reaction for O(3P) and O2(\({}^{3}\Sigma _{g}^{ - }\)) Collision by Quasi-Classical Trajectory


Ting ZhangTing Zhang, Yuping LuYuping Lu, Xinlu ChengXinlu Cheng
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422040331
Abstract / Full Text

Present work studies the dynamical properties of the O + O2 collision by the quasi-classical trajectory method on the double many-body expansion potential energy surface. Our study includes both the exchange and dissociation reactions. For different rovibrational levels of O2, the integral cross-sections (ICSs) distributions of both channels as a function of translational energy were obtained in a range of collision energy from 0.1 to 30 eV, and the dissociation rate was calculated in the temperature range of 1000–20 000 K. Appreciable differences are found for the excitation functions between the two channels as expected for the dissociation with no barrier and exchange having a small barrier. The initial collision energy and vibrational excitation both play an enormous role in the ICSs for both channels, while the rotational excitation of the reagent has a weak effect on it. The results show that vibrationally excited states have some contribution to the dissociation rate.

Author information
  • Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu, ChinaTing Zhang, Yuping Lu & Xinlu Cheng
References
  1. A. L. van Wyngarden, K. A. Mar, K. A. Boering, et al., J. Am. Chem. Soc. 129, 2866 (2007). https://doi.org/10.1021/ja0668163
  2. A. L. Van Wyngarden, K. A. Mar, J. Quach, et al., J. Chem. Phys. 141, 064311 (2014). https://doi.org/10.1063/1.4892346
  3. S. A. Lahankar, J.-M. Zhang, T. K. Minton, et al., J. Phys. Chem. A 120, 5348 (2016). https://doi.org/10.1021/acs.jpca.6b01855
  4. J. H. Kiefer and R. W. Lutz, Symp. (Int.) Combust. 11, 67 (1967). https://doi.org/10.1016/S0082-0784(67)80134-6
  5. O. P. Shatalov, Combust. Explos. Shock Waves 9, 610 (1973). https://doi.org/10.1007/BF00742888
  6. F. Esposito and M. Capitelli, Chem. Phys. Lett. 364, 180 (2002).https://doi.org/10.1016/S0009-2614(02)01329-5
  7. F. Esposito, I. Armenise, G. Capitta, and M. Capitelli, Chem. Phys. 351, 91 (2008). https://doi.org/10.1016/j.chemphys.2008.04.004
  8. D. A. Andrienko and I. D. Boyd, J. Chem. Phys. 144, 104301 (2016). https://doi.org/10.1063/1.4943114
  9. D. A. Andrienko, J. Chem. Phys. 152, 044305 (2020). https://doi.org/10.1063/1.5142191
  10. M. S. Grover, T. E. Schwartzentruber, Z. Varga, and D. G. Truhlar, J. Thermophys. Heat Transfer 33, 797 (2019). https://doi.org/10.2514/1.T5551
  11. Z. Varga, Y. Paukku, and D. G. Truhlar, J. Chem. Phys. 147, 154312 (2017). https://doi.org/10.1063/1.4997169
  12. G. Lendvay, J. Phys. Chem. A 123, 10230 (2019). https://doi.org/10.1021/acs.jpca.9b07393
  13. M. Kulakhmetov, M. Gallis, and A. Alexeenko, J. Chem. Phys. 144, 174302 (2016).
  14. T. K. Mankodi, U. V. Bhandarkar, and B. P. Puranik, J. Chem. Phys. 146, 204307 (2017).
  15. A. Varandas and A. Pais, Mol. Phys. 65, 843 (1988). https://doi.org/10.1080/00268978800101451
  16. D. G. Truhlar and J. T. Muckerman, in Atom-Molecule Collision Theory: A Guide for the Experimentalist, Ed. by R. B. Bernstein (Springer US, Boston, MA, 1979), p. 505.
  17. G. D. Billing and E. Fisher, Chem. Phys. 43, 395 (1979).https://doi.org/10.1016/0301-0104(79)85207-6
  18. P.-Y. Zhang and K.-L. Han, Int. J. Quantum. Chem. 115, 738 (2015). https://doi.org/10.1002/qua.24880
  19. D. Babikov, B. K. Kendrick, R. B. Walker, et al., J. Chem. Phys. 118, 6298 (2003). https://doi.org/10.1063/1.1557936
  20. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, et al., J. Chem. Phys. 139, 134307 (2013). https://doi.org/10.1063/1.4821638
  21. M. Ayouz and D. Babikov, J. Chem. Phys. 138, 164311 (2013). https://doi.org/10.1063/1.4799915
  22. R. Dawes, P. Lolur, A. Li, B. Jiang, and H. Guo, J. Chem. Phys. 139, 201103 (2013).
  23. F. Holka, P. G. Szalay, T. Muller, and V. G. Tyuterev, J. Phys. Chem. A 114, 9927 (2010). https://doi.org/10.1021/jp104182q
  24. V. C. Mota, P. Caridade, and A. J. C. Varandas, J. Phys. Chem. A 116, 3023 (2012). https://doi.org/10.1021/jp104182q
  25. B. R. L. Galvao and A. J. C. Varandas, J. Phys. Chem. A 115, 12390 (2011). https://doi.org/10.1021/jp2073396
  26. Y. Li and A. J. C. Varandas, J. Phys. Chem. A 116, 4646 (2012). https://doi.org/10.1021/jp302173h
  27. M. Kulakhmetov, M. Gallis, and A. Alexeenko, Phys. Fluids 27, 087104 (2015).
  28. E. E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon, Oxford, 1974).
  29. R. Jaffe, D. Schwenke, and G. Chaban, AIAA Paper 2009-1569 (AIAA, 2009).
  30. J. G. Kim and I. D. Boyd, Phys. Fluids 26, 012006 (2014).
  31. K.-L. Han, G.-Z. He, and N.-Q. Lou, J. Chem. Phys. 105, 8699 (1996). https://doi.org/10.1063/1.472651
  32. W. L. Hase, R. J. Duchovic, X. Hu, et al., Quantum Chem. Program Exch. Bull. 16, 671 (1996).
  33. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, Chichester, 1990).
  34. A. Gross and G. D. Billing, Chem. Phys. 217, 1 (1997).