Examples



mdbootstrap.com



 
Статья
2017

The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy


A. L. Gavrilyuk A. L. Gavrilyuk , D. A. Osinkin D. A. Osinkin , D. I. Bronin D. I. Bronin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517060040
Abstract / Full Text

The state-of-the-art in realization of the method of distribution of relaxation times (DRT) as applied to the analysis of data of electrochemical impedance spectroscopy is briefly surveyed. The theoretical fundamentals of the DRT method are described, the methods of solving the Fredholm equation of the 1st order with respect to the unknown DRT function are considered as an ill-defined problem. The Tikhonov regularization method presently considered as the most suitable for solving this equation is discussed. For several numerical experiments, the high resolution of the DRT method and its stability with respect to noise in impedance spectra are demonstrated. Among the problems and limitations of the DRT methods, the choice of the optimal regularization coefficient is considered as the most significant. Particularly, it is shown that in those cases where several relaxation processes with the constant phase angle appear in the response of objects under study to ac disturbances, different regularization coefficients should be selected for each of these elements in order to obtain adequate results.

Author information
  • School of Mathematical Science, University of Science and Technology of China, Anhui, 230026, PR China

    A. L. Gavrilyuk

  • Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russia

    A. L. Gavrilyuk

  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    D. A. Osinkin & D. I. Bronin

  • Ural Federal University, Yekaterinburg, 620002, Russia

    D. A. Osinkin & D. I. Bronin

References
  1. Grafov, B.M. and Ukshe, E.A., Elektrokhimicheskie tsepi peremennogo toka (Electrochemical Alternating- Current Circuits), Moscow Nauka, 1973.
  2. Ukshe, E.A. and Bukun, N.G., Tverdye elektrolity (Solid Electrolytes), Moscow Nauka, 1977.
  3. Boukamp, B.A., Solid State Ionics, 2004, vol. 169, p. 65.
  4. Schichlein, H., Muller, A.C., Voigts, M., Krugel, A., and Ivers-Tiffee, E., J. Appl. Electrochem., 2002, vol. 32, p. 875.
  5. Macdonald, J.R. and Brachman, M.K., Rev. Mod. Phys., 1956, vol. 28, p. 393.
  6. Colonomos, P. and Gordon, R.G., J. Chem. Phys., 1979, vol. 71, p. 1159.
  7. Franklin, A.D. and de Bruin, H.J., Phys. Status Solidi A, 1983, vol. 75, pp. 647–656.
  8. Weese, J., Comput. Phys. Commun., 1992, vol. 69, p. 99.
  9. Liedermann, K., J. Non-Cryst. Solids, 1994, vol. 175, p. 21.
  10. Smirnova, A.L., Ellwood, K.R., and Crosbie, G.M., J. Electrochem. Soc., 2001, vol. 148, p. A610.
  11. Dion, F. and Lasia, A., J. Electroanal. Chem., 1999, vol. 475, pp. 28–37.
  12. Prilezhaeva, I.N., Solov’ev, N.P., and Khramushin, N.I., Russ. J. Electrochem., 2004, vol. 40, p. 1223.
  13. Ramos, T., Thyden, K., and Mogensen, M., ECS Trans., 2010, vol. 28, p. 123.
  14. Kazlauskas, S., Kežionis, A., Šalkus, T., and Orliukas, A.F., Solid State Ionics, 2013, vol. 231, p. 37.
  15. Fuoss, R.M. and Kirkwood, J.G., J. Am. Chem. Soc., 1941, vol. 63, p. 385.
  16. Macdonald, J.R. and Brachman, M.K., Rev. Mod. Phys., 1956, vol. 28, p. 393.
  17. Impedance Spectroscopy. Theory, Experiment, and Applications, Barsoukov, E. and Macdonald, J.R., Eds., Hoboken, New Jersey: John Wiley and Sons, Inc., 2005, 2nd Ed.
  18. Zhang, Y., Chen, Y., Yan, M., and Chen, F., J. Power Sources, 2015, vol. 283, p. 464.
  19. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach, (Methods of Solving Ill-Posed Problems), Moscow: Nauka, 1979, 2nd. Ed.
  20. Hörlin, T., Solid State Ionics, 1993, vol. 67, p. 85.
  21. Hörlin, T., Solid State Ionics, 1998, vol. 107, p. 241.
  22. Noot, T.J.V., J. Electroanal. Chem., 1995, vol. 386, p. 57.
  23. Tesler, A., Lewin, D., Baltianski, S., and Tsur, Y., J. Electroceram., 2010, vol. 24, p. 245.
  24. Hershkovitz, S., Baltianski, S., and Tsur, Y., Solid State Ionics, 2011, vol. 104.
  25. Hershkovitz, S., Tomer, S., Baltianski, S., and Tsur, Y., ECS Trans., 2011, vol. 33, p. 67.
  26. Saccoccio, M., Wan, T.H., Chen, C., and Ciucci, F., Electrochim. Acta, 2014, vol. 147, p. 470.
  27. Schmidt, J., Berg, P., Schönleber, M., Weber, A., and Ivers-Tiffée, E., J. Power Sources, 2013, vol. 221, p. 70.
  28. Boukamp, B.A., Electrochim. Acta, 2015, vol. 154, p. 35.
  29. Macutkevic, J., Banys, J., and Matulis, A., Nonlinear Analysis: Modeling and Control, 2004, vol. 9, p. 75.
  30. Wan, T.H., Saccoccio, M., Chen, C., and Ciucci, F., Electrochim. Acta, 2015, vol. 184, p. 483.
  31. Hansen, J.K., Hogue, J.D., Sander, G.K., Renaut, R.A., and Popat, S.C., J. Comput. Appl. Math., 2015, vol. 278, p. 52.
  32. Tikhonov, A.N., Dokl. Akad. Nauk SSSR, 1985, vol. 280, p. 559.
  33. Honerkamp, J. and Weese, J., Continuum Mech. Thermodyn., 1990, vol. 2, p. 17.
  34. Leonide, A., PhD Thesis, Karlsruher Inst. Technologie, 2010.
  35. Bauer, F. and Lukas, M.A., Math. Comput. Simulation, 2001, vol. 81, p. 1795.
  36. Zhang, Y., Chen, Y., Li, M., Yan, M., Ni, M., and Xia, C., J. Power Sources, 2016, vol. 308, p. 1.
  37. Brachman, M.K. and Macdonald, J.R., Physica, 1954, vol. 20, p. 1266.
  38. Renaut, R.A., Baker, R., Horst, M., Johnson, C., and Nasir, D., Inverse Problems, 2013, vol. 29, no. 24, p. 045006.
  39. Zhang, Y., Chen, Y., Yan, M., and Chen, F., J. Power Sources, 2015, vol. 283, p. 464.
  40. Vasin, V.V. and Ageev, A.L., Nekorrektnye zadachi s apriornoi informatsiei (Ill-posed Problems with a priory Information), Yekaterinburg UIF Nauka, 1993.
  41. Klotz, D., Schmidt, J.P., Kromp, A., Weber, A., and Ivers-Tiffée, E., ECS Trans., 2012, vol. 41, p. 25.