Examples



mdbootstrap.com



 
Статья
2020

Thermal Analysis of Ozonized Pinewood


N. A. MamleevaN. A. Mamleeva, A. V. ShumyantsevA. V. Shumyantsev, V. V. LuninV. V. Lunin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420030218
Abstract / Full Text

The transformation of pinewood under the action of ozone is investigated via synchronous thermal analysis in combination with the mass spectral (MS) analysis of incondensable products of pyrolysis. TG/DTG and MS data are analyzed from the viewpoint of the conversion of wood lignin (LG), hemicelluloses (HCs), and cellulose (CL) in the composition of products of LG oxidation using different amounts of absorbed ozone. Results from TG/DTG analysis indicate the destruction of hemicelluloses during pinewood ozonation. The lower temperature of the thermal destruction of cellulose material (CM) produced from ozonized wood correlates with the lower LG content, the depolimerization of CL, and the formation of products of oxidation in biomass ozonation. Data from TG/DTG and MS analyses suggest that when wood is treated with ozone, aromatic lignin structures are not only destroyed but polymerized as well.

Author information
  • Department of Chemistry, Moscow State University, 119991, Moscow, RussiaN. A. Mamleeva, A. V. Shumyantsev & V. V. Lunin
References
  1. R. Travaini, J. Martín-Juárez, A. Lorenzo-Hernando, and S. Bolado-Rodriges, Biores. Technol. 199, 2 (2016).
  2. N. A. Mamleeva, S. A. Autlov, N. G. Bazarnova, and V. V. Lunin, Russ. J. Bioorg. Chem. 42, 694 (2016).
  3. N. A. Mamleeva, A. N. Kharlanov, D. G. Chukhchin, et al., Khim. Rastit. Syr’ya, No. 1, 85 (2019).
  4. E. M. Ben’ko, D. G. Chukchin, V. V. Lunin, Russ. J. Phys. Chem. A 91, 2092 (2017).
  5. S. L. Andersen, R. Castoldi, A. Bracht, et al., Wood Sci. Technol. (2018). https://doi.org/10.1007/s00226-018-1061-7
  6. O. M. Perrone, F. M. Colombari, J. S. Rossi, et al., Biores. Technol. 218, 69 (2016).
  7. N. A. Mamleeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 2550 (2019).
  8. N. A. Mamleeva, N. A. Babayeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 28 (2019).
  9. M. Carrier, A. Loppinet-Serani, D. Denux, et al., Biomass Bioenergy 35, 298 (2011).
  10. S. R. Loskutov, O. A. Shapchenkova, and A. A. Aniskina, Sib. Lesn. Zh. 6, 17 (2015).
  11. N. Labbé, L. M. Kline, L. Moens, et al., Biores. Technol. 104, 701 (2012).
  12. J. Zhang, L. Feng, D. Wang, et al., Biores. Technol. 153, 379 (2014).
  13. R. C. Korošec, B. Lavric, G. Rep, et al., J. Therm. Anal. Calorim. 98, 189 (2009).
  14. D. R. Naron, F. X. Collard, L. Tyhoda, and J. F. Gorgens, Ind. Crops Products 101, 61 (2017).
  15. E. Jakab, O. Faix, and F. Till, J. Anal. Appl. Pyrol 40–41, 171 (1997).
  16. V. I. Sharypov, L. I. Grishechko, L. S. Tarasova, et al., J. Sib. Fed. Univ. Chem. 3, 221 (2011).
  17. R. Laryea-Goldsmith and C. Woolard, Renewable Energy 2013, 508965 (2013). https://doi.org/10.1155/2013/508965
  18. Y. Chen, J. Duan, and Y.-H. Luo, J. Anal. Appl. Pyrolys. 83, 165 (2008).
  19. P. Maitri, Cand. Sci. (Phys. Math.) Dissertation (Tomsk, 2012).
  20. S. Yaman, Energy Convers. Manage. 45, 651 (2004).