Examples



mdbootstrap.com



 
Статья
2020

Synthesis and Visible-Light Photocatalytic Activity of Graphite-like Carbon Nitride Nanopowders


M. I. ChebanenkoM. I. Chebanenko, N. V. ZakharovaN. V. Zakharova, V. I. PopkovV. I. Popkov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220040035
Abstract / Full Text

Graphite-like carbon nitride (g-C3N4) nanopowders were synthesized by heat treatment of urea in air at a temperature of 450–550°С for 30 min and studied by X-ray diffraction and infrared spectroscopy. The main processes resulting in the formation of g-C3N4 from urea under the above conditions was established using the method of simultaneous thermal analysis. It was found that with an increase in the processing temperature of urea from 450 to 550°C, a rise in the specific surface of the powders occurs from 43.3 to 58.6 m2 g–1, as well as an increase in the crystallite sizes of graphite-like carbon nitride in the crystallographic direction (002) from 2.8 to 4.1 nm. According to the results of scanning electron microscopy and low-temperature nitrogen adsorption, the obtained graphite-like carbon nitride powders have a mesoporous structure and are characterized by an average pore size of 6.6–13.8 nm and porosity of 0.07–0.20 cm3 g–1. According to the results of diffuse reflectance spectroscopy, it was found that g-C3N4 nanopowders absorb radiation in the visible region and have a band gap of 2.9 eV. The photocatalytic activity of the obtained graphite-like carbon nitride during the oxidation of an aqueous murexide solution under the influence of visible light was analyzed and it was shown that the obtained g-C3N4 nanopowders have activity close to that of the commercial TiO2 photocatalyst (AEROXIDE P25). In view of the high activity and low cost, the obtained powders of graphite-like carbon nitride can be used as the substrate for new photocatalytic materials.

Author information
  • Ioffe Institute, 194021, St. Petersburg, RussiaM. I. Chebanenko & V. I. Popkov
  • St. Petersburg State Institute of Technology, 190013, St. Petersburg, RussiaN. V. Zakharova
References
  1. Spasiano, D., Marotta, R., Malato, S., Fernandez-Ibanez, P., and Di Somma, I., Appl. Catal. B: Environmental, 2015, vol. 170–171, pp. 90–123. https://doi.org/10.1016/j.apcatb.2014.12.050
  2. Vasilevskaia, A.K., Popkov, V.I., Valeeva, A.A., Rempel, A.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 8, pp. 1211–1220. https://doi.org/10.1134/S1070427216080012
  3. Fagan, R., McCormack, D.E., Dionysiou, D.D., and Pillai, S.C., Mater. Sci. Semiconductor Processing, 2016, vol. 42, pp. 2–14. https://doi.org/10.1016/j.mssp.2015.07.052
  4. Ilkaeva, M., Krivtsov, I., Bartashevich, E., Khainakov, S.A., García, J.R., Díaz, E., and Ordónez, S., Green Chem. Lett. and Reviews, 2017, vol. 19, no. 18, pp. 4299–4304. https://doi.org/10.1039/C7GC01588G
  5. Kadi, M.W., Mohamed, R.M., Ismail, A.A., and Bahnemann, D.W., Appl. Nanosci., 2018, vol. 8, no. 6, pp. 1587–1596. https://doi.org/10.1007/s13204-018-0835-4
  6. Schaber, P.M., Colson, J., Higgins, S., Thielen, D., Anspach, B., and Brauer, J., Thermochim. Acta, 2004, vol. 424, nos. 1–2, pp. 131–142. https://doi.org/10.1016/j.tca.2004.05.018
  7. Mo, Z., She, X., Li, Y., Liu, L., Huang, L., Chen, Z., Zhang, Q., Xu, H., Li, H., RSC Advances—Royal Soc. Chem., 2015, vol. 5, no. 123, pp. 101552–101562. https://doi.org/10.1039/C5RA19586A
  8. Wen, J., Xie, J., Chen, X., Li, X., Appl. Surface Sci., 2017, vol. 391, pp. 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030
  9. Zhang, J.-H., Hou, Y.-J., Wang, S.-J., Zhu, X., Zhu, Ch.-Y., Wang, Zh., Li, Ch.-J., Jiang, J.-J., Wang, H.-P., Pan, M., and Sua, C-Y., J. Mater. Chem. A, 2018, vol. 6, no. 37, pp. 18252–18257. https://doi.org/10.1039/C8TA06726K
  10. Ming, L., Yue, H., Xu, L., and Chen, F., J. Mater. Chem. A., 2014, vol. 2, no. 45, pp. 19145–19149. https://doi.org/10.1039/C4TA04041D
  11. Khan, A., Alama, U., Razaa, W., Bahnemannbc, D., and Muneer, M., J. Phys. Chem. Solids, 2018, vol. 115, pp. 59–68. https://doi.org/10.1016/j.jpcs.2017.10.032
  12. Kharlamov, A., Bondarenko, M., Kharlamova, G., and Gubareni, N., Diamond and Related Mater., 2016, vol. 66, pp. 16–22. https://doi.org/10.1016/j.diamond.2016.03.012
  13. Chidhambaram, N. and Ravichandran, K., Mater. Lett., 2017, vol. 207, pp. 44–48. https://doi.org/10.1016/j.matlet.2017.07.040
  14. Dong, F., Wang, Zh., Sun, Y., Hob, W.-K., and Zhang, H., J. Colloid Interface Sci., 2013, vol. 401, pp. 70–79. https://doi.org/10.1016/j.jcis.2013.03.034
  15. Dong, F., Liwen Wu, L., Sun, Y., Fu, M., Wu, Zh., and Lee, S.C., J. Mater. Chem., 2011, vol. 21, no. 39, pp. 15171–15174. https://doi.org/10.1039/c1jm12844b
  16. Xu, J., Li, Y., Peng, Sh., Lu, G., and Li, Sh., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 20, pp. 7657. https://doi.org/10.1039/c3cp44687e
  17. Lotsch, B.V. and Schnick, W., Chem. Mater., 2005, vol. 17, pp. 3976–3982. https://doi.org/10.1021/cm050350q
  18. Zhang, Y., Liu, J., Wua, G., and Chen, W., Nanoscale, 2012, vol. 4, pp. 5300–5303. https://doi.org/10.1039/C2NR30948C
  19. Ye, S., Wang, R., Wu, M.-Z., and Yuan, Y.-P., Appl. Surface Sci., 2015, vol. 358, pp. 15–27. https://doi.org/10.1016/j.apsusc.2015.08.173
  20. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 4, pp. 642–648. https://doi.org/10.1134/s0036024409040219