Examples



mdbootstrap.com



 
Статья
2019

Physicochemical and Sorption Properties of Natural Coal Samples with Various Degrees of Metamorphism


V. G. SmirnovV. G. Smirnov, V. V. DyrdinV. V. Dyrdin, A. Yu. ManakovA. Yu. Manakov, N. I. FedorovaN. I. Fedorova, N. V. ShikinaN. V. Shikina, Z. R. IsmagilovZ. R. Ismagilov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219100112
Abstract / Full Text

Porosity of eight samples of natural coals was measured in which, with increasing degree of metamorphism, the content of carbon in the organic mass grows from 80 to 93%, and that of oxygen decreases from 14 to 2%. The methods of low-temperature sorption of nitrogen and mercury porosimetry were used, and the isotherm of water sorption was examined (+27°C). Each method was used to calculate the pore volume and the monolayer capacity in sorption of water and sorption of nitrogen, and the pore surface area. The Dent sorption equation was used to calculate the amounts of firmly and weakly bound water in each sample. It was shown that that the amount of strongly bound water monotonically depends on the amount of oxygen in the organic mass. For the natural coal samples under study, the volume of sorbed water is close to the total pore volume determined by the method of mercury porosimetry and is an order of magnitude larger than the pore volume measured by the method of low-temperature nitrogen sorption. Reasons for this discrepancy are discussed.

Author information
  • Kuzbass State Technical University named after T.F. Gorbachev, Kemerovo, 650000, RussiaV. G. Smirnov & V. V. Dyrdin
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, RussiaA. Yu. Manakov
  • Institute of Coal Chemistry and Chemical Materials Science, Federal Research Center of Coal and Coal Chemistry, Kemerovo, 650000, RussiaN. I. Fedorova & Z. R. Ismagilov
  • Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, RussiaN. V. Shikina & Z. R. Ismagilov
References
  1. Gyul’maliev, A.M., Golovin, G.S., and Gladun, T.G., Teoreticheskie osnovy khimii uglya (Theoretical Foundations of Coal Chemistry), Moscow: Mosk. Gos. Gumanit. Univ., 2003, pp. 7–32.
  2. Rus’yanova, N.D., Uglekhimiya (Coal Chemistry), Moscow: Nauka, 2000, pp. 17–59.
  3. Van Krevelen, D.W., Coal: Typology, Physics, Chemistry, Constitution, Amsterdam: Elsevier, 1993.
  4. Ismagilov, Z.R., Shikina, N.V., Kerzhentsev, M.A., Zhuravleva, N.V., Potokina, R.R., and Teryaeva T.N., Solid Fuel Chem., 2014, vol. 48, no. 4, pp. 215–223. https://doi.org/10.3103/S0361521914040053.
  5. Ulanovskii, M.L., Coke and Chem., 2011, vol. 54, no. 2, pp. 33–39. https://doi.org/10.3103/S1068364X11020074
  6. Nie, B., Liu, X., Yang, L., Meng, J., and Li, X., Fuel, 2015, vol. 158, pp. 908–917. https://doi.org/10.1016/j.fuel.2015.06.050
  7. Gregg S.J. and Sing, K.S.W.C., Adsorption, Surface Area and Porosity, London: Acad. Press, 2nd ed., 1982.
  8. Ruthven, D.M., Farooq, S., and Knaebel, K.S., Pressure Swing Adsorption, USA: VCH Publ., 1994, pp. 11–63.
  9. Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction into Physical Chemistry of Formation of a Supramoleculr Structure of Adsorbents and Catalysts), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2004, pp. 58–93, 299–324.
  10. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Kenneth, S.W., Sing. Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117
  11. Alexeev, A.D., Vasylenko, T.A., and Ul’yanova, E.V., Solid State Commun., 2004, vol. 130, pp. 669–673. https://doi.org/10.1016/j.ssc.2004.03.034
  12. Cai, Y., Liu, D., Pan, Z., Yao, Y., Li, J., and Qiu, Y., Fuel, 2013, vol. 103, pp. 258–268. https://doi.org/10.1016/j.fuel.2012.06.055
  13. Kędzior, S. and Jelonek, I., Int. J. Coal. Geol., 2013, vol. 111, pp. 98–105. https://doi.org/10.1016/j.coal.2012.08.007
  14. Frolkov, G.D. and Frolkov, A.G., Solid Fuel Chem., 2011, vol. 45, no. 1, pp. 7–11. DOI: 10.3103/S0361521911010046
  15. Liu, H., Mou, J., and Cheng, Y., J. Nat. Gas Sci. Eng., 2015, vol. 22, pp. 203–213. https://doi.org/10.1016/j.jngse.2014.11.030
  16. Smirnov, V.G., Dyrdin, V.V., Manakov, A.Y., Khitsova, L.M., Mikhaylova, E.S., and Ismagilov, Z.R., Coke and Chem., 2017, vol. 60, no. 10, pp. 375–379. https://doi.org/10.3103/S1068364X17100076].
  17. Tahmasebi, A., Han, Y., Yin, F., and Li, X., Fuel Proc. Tech., 2013, vol. 106, pp. 9–20. https://doi.org/10.1016/j.fuproc.2012.09.051
  18. McCutcheon, A.L., Barton, W.A., and Wilson, M.A., Energy Fuels, 2003, vol. 17, pp. 107–112. https://doi.org/10.1021/ef020101d
  19. Norinaga, K., Kumagai, H., Hayashi, Ju., and Chiba, T., Energy Fuels, 1998, vol. 12, pp. 574–579. https://doi.org/10.1021/ef970183j
  20. Charrière, D. and Behra, P., J. Colloid Interface Sci., 2010, vol. 344, pp. 460–467. https://doi.org/10.1016/j.jcis.2009.11.064
  21. Švábová, M., Weishauptová, Z., and Přibyl, O., Fuel, 2011, vol. 90, pp. 1892–1899. https://doi.org/10.1016/j.fuel.2011.01.005
  22. Allardice, D.J., Clemow, L.M., Favas, G., Jackson, W.R., Marshall, M., and Sakurovs, R., Fuel, 2001, vol. 82, pp. 661–667. https://doi.org/10.1016/S0016-2361(02)00339-3
  23. Smirnov, V.G., Manakov, A.Y., Ukraintseva, E.A., Villevald, G.V., Karpova, T.D., Dyrdin, V.V., Lyrshchikov, S.Y., Ismagilov, Z.R., Terekhova, I.S., and Ogienko, A.G., Fuel, 2016, vol. 166, pp. 188–195. https://doi.org/10.1016/jfuel.2015.10.123
  24. Smirnov, VG., Dyrdin, V.V., Manakov, A.Y., Rodionova, T.V., Villevald, G.V., Ismagilov, Z.R., Mikhailova, E.S., and Malysheva, V.Y., Fuel, 2018, vol. 228, pp. 123–131. https://doi.org/10.1016/jfuel.2018.04.131
  25. Dyrdin, V.V, Smirnov, V.G., Kim, T.L., Manakov, A.Yu., Fofanov, A.A., and Kartopolova, I.S., Russ. Phys. J., 2017, vol. 60, no. 2. June, pp. 206–214. https://doi.org/10.1007/s11182-017-1063-1.
  26. Smirnov, V.G., Dyrdin, V.V., Manakov, A.Yu., Kim, T.L., and Shepeleva, S.A. Izv. vuzov. Gorn. zhurn., 2014, no. 1, pp. 128–135.
  27. Airuni, A.T., Prognozirovanie i predotvrashchenie gazodinamicheskikh yavlenii v ugol’nykh shakhtakh (Prognostication and Prevention of Gas-Dynamic Phenomena in Coal Mines), Moscow: Nauka, 1987, pp. 189–236.
  28. Alekseev, A.D., Fizika uglei i gornykh protsessov (Physics of Coals and Mining Processes), Kiev: Naukova Dumka, 2010, pp. 93–155.
  29. Nishino, J., Fuel, 2001, vol. 80, pp. 757–764. https://doi.org/10.1016/S0016-2361(00)00136-8