Examples



mdbootstrap.com



 
Статья
2021

O- and S-containing 1-azadiene derivatives of 3-aminopropylsilatrane


S. N. AdamovichS. N. Adamovich, I. A. UshakovI. A. Ushakov, A. V. AfoninA. V. Afonin, N. V. VchisloN. V. Vchislo, E. N. OborinaE. N. Oborina, D. V. PavlovD. V. Pavlov
Российский химический вестник
https://doi.org/10.1007/s11172-021-3100-z
Abstract / Full Text

Silatranes bearing the aryl(hetaryl)-substituted 1-azadienyl moiety ((Het)ArCH=C(YR) C(H)=N- (Y = O, S)) were synthesized by the reaction of 1-(3-aminopropyl)silatrane with 2-alkoxy- and 2-alkylthio-3-(het)arylpropenals. The structures and stereoisomeric compositions of the synthesized compounds were proved by elemental analysis, IR spectroscopy, 1D 1H, 13C, 15N, 29Si, and 2D NMR experiments, mass spectrometry, and DFT calculations. O-Containing compounds exist exclusively as the 1E,2Z isomers, while S-containing derivatives are the mixtures of the 1E,2Z and 1E,2E stereoisomers. Newly synthesized chalcogen-containing poly-functional compounds represent the promising building blocks for design and synthesis of advanced materials and pharmaceuticals.

Author information
  • A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 ul. Favorskogo, 664033, Irkutsk, Russian FederationS. N. Adamovich, I. A. Ushakov, A. V. Afonin, N. V. Vchislo, E. N. Oborina & D. V. Pavlov
  • Irkutsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, 134 ul. Lermontova, 664033, Irkutsk, Russian FederationS. N. Adamovich & E. N. Oborina
References
  1. M. G. Voronkov, V. M. Dyakov, S. V. Kirpichenko, J. Organomet. Chem., 1982, 233, 1; DOI: https://doi.org/10.1016/S0022328X(00)86939-9.
  2. M. G. Voronkov, V. P. Baryshok, Pharm. Chem. J., 2004, 38, 3; DOI: https://doi.org/10.1023/B:PHAC.0000027635.41154.0d.
  3. J. K. Puri, R. Singh, V. K. Chahal, Chem. Soc. Rev., 2011, 40, 1791; DOI: https://doi.org/10.1039/B925899J.
  4. S. N. Adamovich, R. G. Mirskov, A. N. Mirskova, M. G. Voronkov, Russ. Chem. Bull., 2012, 61, 2011.
  5. S. N. Adamovich, V. V. Novokshonov, I. A. Ushakov, V. G. Elshina, E. N. Oborina, Russ.Chem. Bull., 2018, 67, 1744.
  6. S. N. Adamovich, Appl. Organomet. Chem., 2019, 33, e4940; DOI: https://doi.org/10.1002/aoc.4940.
  7. E. A. Grebneva, Y. I. Bolgova, O. M. Trofimova, A. I. Albanov, T. N. Borodina, Chem. Heterocycl. Compd., 2019, 55, 762.
  8. V. V. Istratov, V. A. Vasnev, Russ. Chem. Bull., 2020, 69, 1134.
  9. S. N. Adamovich, E. N. Oborina, I. A. Ushakov, Mendeleev Commun., 2019, 29, 688.
  10. V. I. Smirnov, E. A. Zelbst, G. A. Kuznetzova, I. V. Sterkhova, Mendeleev Commun., 2018, 28, 278.
  11. W.-H. Chen, Y.-T. Tseng, S. Hsieh, W.-C. Liu, C.-W. Hsieh, C.-W. Wu, C.-H. Huang, H.-Y. Lin, C.-W. Chen, P.-Y. Lin, L.-K. Chau, RSC Adv., 2014, 4, 46527; DOI: https://doi.org/10.1039/C4RA05583G.
  12. C.-J. Huang, Y.-Y. Zheng, Langmuir, 2019, 35, 1662; DOI: https://doi.org/10.1021/acs.langmuir.8b01981.
  13. W. Kim, L. O. Casalme, T. Umezawa, F. Matsuda, R. Otomo, Y. Kamiya, Chem. Lett., 2020, 49, 71; DOI: https://doi.org/10.1246/cl.190773.
  14. K. L. Materna, B. J. Brennan, G. W. Brudvig, Dalton Trans., 2015, 44, 20312; DOI: https://doi.org/10.1039/c5dt03463a.
  15. K.-W. Huang, C.-W. Hsieh, H.-C. Kan, Sens. Actuators B: Chem., 2012, 163, 207; DOI: https://doi.org/10.1016/j.snb.2012.01.037.
  16. G. Singh, A. Saroa, S. Girdhar, S. Rani, S. Sahoo, D. Choquesillo-Lazarte, Inorg. Chim. Acta, 2015, 427, 232; DOI: https://doi.org/10.1016/j.ica.2015.01.011.
  17. A. Han, L. Li, K. Qing, X. Qi, L. Hou, X. Luo, S. Shi, F. Ye, Bioorg, Med. Chem. Lett., 2013, 23, 1310; DOI: https://doi.org/10.1016/j.bmcl.2012.12.097.
  18. F. Ye, X. Song, J. Liu, X. Xu, Y. Wang, L. Hu, Y. Wang, G. Liang, P. Guo, Z. Xie, Chem. Biol. Drug. Des., 2015, 86, 905; DOI: https://doi.org/10.1111/cbdd.12519.
  19. J. Zuo, C. Bi, Y. Fan, D. Buac, C. Nardon, K. G. Daniel, Q. P. Dou, J. Inorg. Biochem., 2013, 118, 83; DOI: https://doi.org/10.1016/j.jinorgbio.2012.10.006.
  20. R. Singh, R. Mutneja, V. Kaur, J. Wagler, E. Kroke, J. Organomet. Chem., 2013, 724, 186; DOI: https://doi.org/10.1016/j.jorganchem.2012.11.009.
  21. S. Singh, S. Girdhar, A. Singh, A. Saroa, J. S. Lakhi, S. Khullar, S. K. Mandal, New J. Chem., 2018, 42, 6315; DOI: https://doi.org/10.1039/c8nj00728d.
  22. Y. Lin, B. Song, A. Han, S. Hu, F. Ye, Z. Xie, Phosphorus, Sulfur Silicon Relat. Elem., 2011, 186, 298; DOI: https://doi.org/10.1080/10426507.2010.496747.
  23. Q. Ding, X. Luo, R. Xhuo, Chem. J. Chinese Univ., 1989, 10, 369
  24. Q. Ding, X. Luo, R. Xhuo, Chem Abstr., 1990, 112, 77314u.
  25. N. A. Keiko, L. G. Stepanova, E. A. Verochkina, L. I. Larina, ARKIVOC, 2010, Part ii, 49; DOI: https://doi.org/10.3998/ark.5550190.0011.204.
  26. N. A. Keiko, N. V. Vchislo, Asian J. Org. Chem., 2016, 5, 1169; DOI: https://doi.org/10.1002/ajoc.201600227.
  27. S. N. Adamovich, N. V. Vchislo, E. N. Oborina, I. A. Ushakov, I. B. Rozentsveig, Mendeleev Commun., 2017, 27, 443; DOI: https://doi.org/10.1016/j.mencom.2017.09.003.
  28. B. Groenendaal, E. Ruijter, R. V. A. Orru, Chem. Commun., 2008, 5474; DOI: https://doi.org/10.1039/b809206k.
  29. M. M. Heravi, T. Ahmadi, M. Ghavidel, B. Heidari, H. Hamidi, RSC Adv., 2015, 5, 101999; DOI: https://doi.org/10.1039/c5ra17488k.
  30. A. D. J. Calow, J. J. Carbo, J. J. Cid, Org. Chem., 2014, 79, 5163; DOI: https://doi.org/10.1021/jo5007366.
  31. A. V. Afonin, A. V. Vashchenko, A. I. Albanov, V. V. Nosyreva, A. G. Mal’kina, B. A. Trofimov, Magn. Reson. Chem., 2017, 55, 563; DOI: https://doi.org/10.1002/mrc.4551.
  32. V. F. Traven, I. V. Ivanov, V. S. Lebedev, B. G. Milevskii, T. A. Chibisova, N. P. Solov’eva, V. I. Polshakov, O. N. Kazheva, G. G. Alexandrov, O. A. Dyachenko, Mendeleev Commun., 2009, 19, 214; DOI: https://doi.org/10.1016/j.mencom.2009.07.014.
  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford (CT), 2009.
  34. D. J. Becke, Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.
  35. C. Lee, W. Yang, R. P. Parr, Phys. Rev. B, 1988, 37, 785; DOI: https://doi.org/10.1103/PhysRevB.37.785.
  36. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. Von Rague Schleyer, J. Comput. Chem., 1983, 4, 294; DOI: https://doi.org/10.1002/jcc.540040303.