Examples



mdbootstrap.com



 
Статья
2019

Hydro-Oxygenation of Furfural in the Presence of Ruthenium Catalysts Based on Al-HMS Mesoporous Support


E. A. RolduginaE. A. Roldugina, N. N. ShayakhmetovN. N. Shayakhmetov, A. L. MaksimovA. L. Maksimov, E. A. KarakhanovE. A. Karakhanov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219090167
Abstract / Full Text

Ruthenium-containing catalyst based on an Al-HMS mesoporous aluminosilicate was synthesized, The mesoporous support and the catalyst on its basis were characterized by the methods of low-temperature desorption/adsorption of nitrogen, temperature-programmed desorption of ammonia, transmission electron microscopy, X-ray photoelectron microscopy, and energy-dispersive X-ray fluorescence analysis. The catalyst obtained was examined in the reaction of hydrodeoxygenation of the model compound of bio-oil, furfural, in the presence of water. The reaction was performed at initial hydrogen pressures of 1–7 MPa in the temperature range 200–300°C. It was shown that the catalyst under study exhibits a high activity in the hydrotransformation of furfural: the conversion was 100% in 1 h at a hydrogen pressure of 5 MPa and temperature of 200°C.

Author information
  • Moscow Lomonosov State University, Moscow, 119991, RussiaE. A. Roldugina, N. N. Shayakhmetov, A. L. Maksimov & E. A. Karakhanov
  • Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, RussiaA. L. Maksimov
References
  1. Talmadge, M.S., Baldwin, R.M., Biddy, M.J., McCormick, R.L., Beckham, G.T., Ferguson, G.A., Czernik, S., Magrini-Bair, K.A., Foust, T.D., Metelsk, P.D., Hetrickd, C., and Nimlos, M.R., Green Chem., 2014, vol. 16, pp. 407–453. https://doi.org/10.1039/C3GC41951G
  2. Mullen, Ch.A. and Boateng, A.A., Fuel, 2019, vol. 245, pp. 360–367. https://doi.org/10.1016/j.fuel.2019.02.027
  3. Shen, D., Jin, W., Hu, J., Xiao, R., and Luo, K., Renew. Sust. Energ. Rev., 2015, vol. 51, pp. 761–774. https://doi.org/10.1016/j.rser.2015.06.054
  4. Sundqvist, T., Oasmaa, A., and Koskinen, A., Energy Fuels, 2015, vol. 29, pp. 2527–2534. https://doi.org/10.1021/acs.energyfuels.5b00238
  5. Santillan-Jimenez, E., Pace, R., Morgan, T., Behnke, C., Sajkowski, D.J., Lappas, A., and Crocker, M., Fuel Process. Technol., 2019, vol. 188, pp. 164–171. https://doi.org/10.1016/j.fuproc.2019.02.018
  6. Lee, I.G., Lee, H., Kang, B.S., Kim, Y.M., Kim, S.C., Jung, S.C., Ko, C.H., and Park, Y.K., J. Nanosci. Nanotechnol., 2018, vol. 18, no. 2, pp. 1331–1335. https://doi.org/10.1166/jnn.2018.14907
  7. Diebold, J.P. and Czernik, S., Energy Fuels, 1997, vol. 115, pp. 1081–1091. https://doi.org/10.1021/ef9700339
  8. Galadima, A. and Muraza, O., Energy Convers. Manag., 2015, vol. 105, no. 15, pp. 338–354. https://doi.org/10.1016/j.enconman.2015.07.078
  9. Zhang, Y., Brown, T.R., Hu, G., and Brown, R.C., Chem. Eng. J., 2013, vol. 225, pp. 895–904. https://doi.org/10.1016/j.cej.2013.01.030
  10. Ardiyanti, A.R., Gutierrez, A., Honkela, M.L., Krause, A., and Heeres, H.J., Appl. Catal., A, 2011, vol. 407, pp. 56–66. https://doi.org/10.1016/j.apcata.2011.08.024
  11. Lin, Y.-C., Li, C.-L., Wan, H.-P., Lee, H.-T., and Liu, C.-F., Energy Fuels, 2011, vol. 25, pp. 890–896. https://doi.org/10.1021/ef101521z
  12. Banerjee, A. and Mushrif, S.H., J. Phys. Chem. C, 2018, vol. 122, no. 32, pp. 18383–18394. https://doi.org/10.1021/acs.jpcc.8b01301
  13. Sitthisa, S. and Resasco, D.E., Catal. Lett., 2011, vol. 141, no. 6, pp. 784–791. https://doi.org/10.1007/s10562-011- 0581-7
  14. Lee, W.-Sh., Wang, Zh., Zheng, W., Vlachos, D.G., and Bhan, A., Catal. Sci. Technol., 2014, vol. 4, pp. 2340–2352. https://doi.org/10.1039/C4CY00286E
  15. Lin, Zh., Chen, R., Qu, Zh., and Chen, J.G., Green Chem., 2018, vol. 20, pp. 2679–2696. https://doi.org/10.1039/C8GC00239H
  16. Olcese, R.N., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F., and Dufour, A., Appl. Catal., B, 2012, vol. 115–116, pp. 63–73. https://doi.org/10.1016/j.apcatb.2011.12.005
  17. Faba, L., Díaz, E., and Ordóñez, S., Appl. Catal., B, 2014, vol. 160–161, pp. 436–444. https://doi.org/10.1016/j.apcatb.2014.05.053
  18. Wang, C., Luo, J., Liao, V., Lee, J.., Onn, T.M., Murray, Ch.B., and Gorte, R.J., Catal. Today, 2018, vol. 302, pp. 73–79.https://doi.org/10.1016/j.cattod.2017.06.042
  19. Wang, W., Zhang, Ch., Chen, G., and Zhang, R., Appl. Sci., 2019, vol. 9, no. 6, pp. 1257. https://doi.org/10.3390/app9061257
  20. Jiang, Zh., Wan, W., Lin, Zh., Xie, J., and Chen, J.G., ACS Catal., 2017, vol. 79, pp. 5758–5765. https://doi.org/10.1021/acscatal.7b01682.
  21. Yao, G., Wu, G., Dai, W., Guan, N., and Li, L., Fuel, 2015, vol. 150, pp. 175–183. https://doi.org/10.1016/j.fuel.2015.02.035
  22. Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K.G., and Jensen, A.D., Appl. Catal., A, 2011, vol. 407, nos. 1–2, pp. 1–19. https://doi.org/10.1016/j.apcata.2011.08.046
  23. Zhang, W., Chen, J., Liu, R., Wang, Sh., Chen, L., and Li, K., ACS Sustainable Chem. Eng., 2014, vol. 24, pp. 683–691. https://doi.org/10.1021/sc400401n
  24. He, Zh. and Wang, X., Catal. Sustainable Energy, 2012, vol. 1, pp. 28–52. https://doi.org/110.2478/cse-2012-0004
  25. Luo, J., Monai, M., Yun, H., Arroyo-Ramírez, L., Wang, C., Murray, Ch.B., Fornasiero, P., Gorte, R.J., Catal. Lett., 2016, vol. 146, no. 4, pp. 711–717. https://doi.org/10.1007/s10562-016-1705-x
  26. Ghampson, T.I., Sepúlveda, C., Garcia, R., García Fierro, J.L., Escalona, N., DeSisto, W.J., Appl. Catal., A, 2012, vol. 435–436, pp. 51–60. https://doi.org/10.1016/j.apcata.2012.05.039
  27. Wang, Y.X., Wu, J.H., and Wang, S.N., RSC Adv., 2013, vol. 3, pp. 12635–12640. https://doi.org/10.1039/C3RA41405A
  28. Phan, T.N., Park, Y.-K., Lee, I.-G., and Ko, C.H., Appl. Catal., A, 2017, vol. 544, pp. 84–93. https://doi.org/10.1016/j.apcata.2017.06.029
  29. An, K., Musselwhite, N., Kennedy, G., Pushkarev, V.V., Baker, L.R., and Somorjai, G.A., J. Colloid Interface Sci., 2013, vol. 392, pp. 122–128. https://doi.org/10.1016/j.jcis.2012.10.029
  30. Roldugina, E.A., Naranov, E.R., Maximov, A.L., and Karakhanov, E.A., Appl. Catal., A, 2018, vol. 553C, pp. 24–35. https://doi.org/10.1016/j.apcata.2018.01.008
  31. Morgan, D.J., Surf. Interface Anal., 2015, vol. 47, no. 11, pp. 1072–1079. https://doi.org/10.1002/sia.5852
  32. Scirè, S., Minicò, S., and Crisafulli, C., Appl. Catal., A, 2002, vol. 235, no. 1–2, pp. 21–31. https://doi.org/10.1016/S0926-860X(02)00237-5
  33. Fuente-Hernández, A., Lee, R., Béland, N., Zamboni, I., and Lavoie, J.-M., Energies, 2017, vol. 10, no. 3, pp. 286. https://doi.org/10.3390/en10030286
  34. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., and López Granados, M., Energy Environ. Sci., 2016, vol. 9, pp. 1144–1189. https://doi.org/10.1039/C5EE02666K
  35. Li, H.-L., Wang, S.-Y., Wang, W.-J., Ren, J.-L., Peng, F., Sun, R.-C., and Liang, L., Bioresources, 2013, vol. 8, no. 3._pp. 3200–3211. https://doi.org/10.15376/biores.8.3.3200-3211
  36. Yu, W., Tang, Y., Mo, L., Chen, P., Lou, H., and Zheng, X., Bioresour. Technol., 2011, vol. 102, pp. 8241–8246. https://doi.org/10.1016/j.biortech.2011.06.015
  37. Yang, J., Li, N., Li, Sh., Wang, W., Li, L., Wang, A., Wang, X., Cong, Y., and Zhang, T., Green Chem., 2014, vol. 16, pp. 4879–4884. https://doi.org/10.1039/c4gc01314j
  38. Fu, Z., Wang, Z., Lin, W., and Song, W., Energy Sources, Part A, 2017, vol. 39, no. 11, pp. 1176–1181. https://doi.org/10.1080/15567036.2017.1310959
  39. Liu, L.-J., Guo, H.-M., Xue, B., Lou, H., and Chen, M., RSC Adv., 2015, vol. 5, no. 82, pp. 66704–66710. https://doi.org/10.1039/C5RA14284A
  40. Li, C., Xu, G., Liu, X., Zhang, Y., and Fu, Y., Ind. Eng. Chem. Res., 2017, vol. 56, no. 31, pp. 8843–8849. https://doi.org/10.1021/acs.iecr.7b02046
  41. Shi, D., Yang, Q., Peterson, C., Lamic-Humblot, A.-F., Girardon, J.-S., Griboval-Constant, A., Stievano, L., Sougrati, M.T., Briois, V., Bagot, P.A.J., Wojcieszak, R., Paul, S., Marceau, E., Catal. Today, 2019, vol. 334, pp. 162–172. https://doi.org/10.1016/j.cattod.2018.11.041
  42. Fang, R.Q., Liu, H.L., Luque, R., and Li, Y.W., Green Chem., 2015, vol. 17, pp. 4183–4188. https://doi.org/10.1039/C5GC01462J
  43. Nakagawa, Y. and Tomishige, K., Catal. Today, 2012, vol. 195, pp. 136–143. https://doi.org/10.1016/j.cattod.2012.04.048
  44. Hronec, M. and Fulajtarova, K., Catal. Commun., 2012, vol. 24, pp. 100–104. https://doi.org/10.1016/j.catcom.2012.03.020
  45. Shen, T., Hu, R., Zhu, C., Li, M., Zhuang, W., Tang, C., and Ying, H., RSC Adv., 2018, vol. 8, pp. 37993–38001. https://doi.org/10.1039/C8RA08757A
  46. Chatterjee, C., Pong, F., and Sen, A., Green Chem., 2015, vol. 17, no. 1, pp. 40–71. https://doi.org/10.1039/C4GC01062K
  47. Khromova, S.A., Bykova, M.V., Bulavchenko, O.A., Ermakov, D.Y., Saraev, A.A., Kaichev, V.V., Venderbosch, R.H., and Yakovlev, V.A., Top. Catal., 2016, vol. 59, no. 15–16, pp. 1413–1423. https://doi.org/10.1007/s11244-016-0649-0