Examples



mdbootstrap.com



 
Статья
2021

Preparation and study of properties of boron-containing polymer based on lactic and boric acids


N. B. SvishchevaN. B. Svishcheva, P. A. KhaptakhanovaP. A. Khaptakhanova, D. A. KasatovD. A. Kasatov, S. A. UspenskiiS. A. Uspenskii
Российский химический вестник
https://doi.org/10.1007/s11172-021-3276-2
Abstract / Full Text

The method for the synthesis of a composition based on polylactic acid (PLA) and containing boric acid (BA) was proposed. The results of gravimetric analysis of granules formed from this composition after hydrolysis in aqueous solutions are presented. The uniform distribution of boric acid or its covalently linked fragments in the polymer bulk was confirmed by elemental analysis. The tests in water of the composition samples as plates showed that the presence of boric acid or its fragments favored the faster mass loss of PLA and the introduction of ∼3% BA accelerated the mass loss by approximately 5 times. The boron-containing polymeric compositions can find use in agriculture as nutritional additives for seedlings and fruit-bearing crops and to eliminate the lack of boron in boron-deficient soils.

Author information
  • N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, 70 ul. Profsoyuznaya, 117393, Moscow, Russian FederationN. B. Svishcheva, P. A. Khaptakhanova & S. A. Uspenskii
  • Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, 11 prosp. Akad. Lavrent’eva, 630090, Novosibirsk, Russian FederationD. A. Kasatov
References
  1. M. S. Matthes, J. M. Robil, P. McSteen, J. Experimental Botany, 2020, 71, 1681–1693; DOI: https://doi.org/10.1093/jxb/eraa042.
  2. M. Brdar-Jokanović, Int. J. Mol. Sci., 2020, 21, 1424; DOI: https://doi.org/10.3390/ijms2r041424.
  3. M. Farooq, A. Rashid, F. Nadeem, S. Stuerz, F. Asch, R. W. Bell, K. H. Siddique, Agronomy for Sustainable Development, 2018, 38, 25; DOI: https://doi.org/10.1007/s13593-018-0504-8.
  4. P. Brown, Plant Biology, 2002, 4, 205–223; DOI: https://doi.org/10.1055/s-2002-25740.
  5. A. Vera, J. Hazard. Mater., 2021, 408, 124939; DOI: https://doi.org/10.1016/j.jhazmat.2020.124939.
  6. K. Mengel, E. A. Kirkby, H. Kosegarten, Th. Appel, Principles of Plant Nutrition, 2001, Springer, 621–638; DOI: https://doi.org/10.1007/978-94-010-1009-2.
  7. F. Degryse, Bor Dergisi, 2017, 2, 111–122; https://dergipark.org.tr/en/pub/boron/issue/33625/373087.
  8. Yu. V. Ermolenko, A. S. Semenkin, Yu. V. Ulyanova, Russ. Chem. Bull., 2020, 69, 1416–1427.
  9. J. Kolstad, Polymer Degradation and Stability, 2012, 97, 1131–1141; DOI: https://doi.org/10.1016/j.polymdegradstab.2012.04.003.
  10. M. G. Vasil’eva, V. M. Lalykina, N. A. Makharashvili, Analiz bora i ego neorganicheskikh soedinenii [Analysis of Boron and Its Inorganic Compounds], Atomizdat, Moscow, 1965, 267 pp. (in Russian).
  11. P. A. Khaptakhanova, Yu. V. Bilichenko, S. A. Uspenskii, Usp. Khim. Khim. Tekhnol. [Success in Chemistry and Chemical Technology], 2018, 32, 166–168 (in Russian).
  12. A. R. Tsygankova, V. V. Kanygin, A. I. Kasatova, Russ. Chem. Bull., 2020, 69, 601–607.