Examples



mdbootstrap.com



 
Статья
2022

Formation and Properties of Nickel Contacts to Thermoelectric Materials Based on Bismuth and Antimony Chalcogenides


E. P. KorchaginE. P. Korchagin, M. Yu. ShternM. Yu. Shtern, A. A. DedkovaA. A. Dedkova
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427222040097
Abstract / Full Text

Procedures were suggested for preparing ohmic contacts by electroless Ni plating onto the surface of samples of thermoelectric materials based on bismuth and antimony chalcogenides. Nickel was deposited directly onto the sample surface and onto a Ni sublayer formed by ion plasma sputtering on the sample surface. The properties of the contacts are influenced by the roughness of the surface of thermoelectric material samples, by solutions used for decapping this surface, by the composition of electrolytes for electroless Ni plating, and by the presence of a Ni sublayer sputtered onto the sample surface. The Ni films up to 25 μm thick, prepared by electroless plating, contained ≥96.73 wt % Ni. The resistivity of the films was ≤10.24 × 10–8 Ω m. The specific contact resistance was (1.50–2.86) × 10−9 Ω m2. The films obtained on thermoelectric material samples by Ni plating from a NaBH4-based electrolyte onto a Ni sublayer sputtered onto these samples showed the highest adhesion strength, 14.62–14.83 MPa.

Author information
  • National Research University Moscow Institute of Electronic Technology, Zelenograd, 124498, Moscow, RussiaE. P. Korchagin, M. Yu. Shtern, I. N. Petukhov, Yu. I. Shtern, M. S. Rogachev, A. O. Kozlov, B. R. Mustafoev & A. A. Dedkova
References
  1. Joshi, G., Mitchell, D., Ruedin, J., Hoover, K., Guzman, R., McAleer, M., Wood, L., and Savoy, S., J. Mater. Chem. C, 2019, vol. 7, no. 3, pp. 479–483. https://doi.org/10.1039/c8tc03147a
  2. Shtern, M., Rogachev, M., Shtern, Y., Gromov, D., Kozlov, A., and Karavaev, I., J. Alloys Compd., 2021, vol. 852, pp. 156889-1–156889-10. https://doi.org/10.1016/j.jallcom.2020.156889
  3. Feng, H., Zhang, L., Zhang, J., Gou, W., Zhong, S., Zhang, G., Geng, H., and Feng, J., Materials, 2021, vol. 13, no. 5, pp. 1130-1–1130-12. https://doi.org/10.3390/ma13051130
  4. Chen, L., Mei, D., Wang, Y., and Li, Y., J. Alloys Compd., 2019, vol. 796, pp. 314–320. https://doi.org/10.1016/j.jallcom.2019.04.293
  5. Sharma, P.A., Brumbach, M., Adams, D.P., Ihlefeld, J.F., Lima-Sharma, A.L., Chou, S., Sugar, J.D., Lu, P., Michael, J.R., and Ingersoll, D., AIP Adv., 2019, vol. 9, no. 1, pp. 015125-1–015125-10. https://doi.org/10.1063/1.5081818
  6. Zhu, X., Cao, L., Zhu, W., and Deng, Y., Adv. Mater. Interfaces, 2018, vol. 5, no. 23, pp. 1801279-1–1801279-9. https://doi.org/10.1002/admi.201801279
  7. Shtern, M.Yu., Karavaev, I.S., Shtern, Y.I., Kozlov, A.O., and Rogachev, M.S., Semiconductors, 2019, vol. 53, no. 13, pp. 1848–1852. https://doi.org/10.1134/S1063782619130177
  8. Kashi, S., Keshavarz, M.K., Vasilevskiy, D., Masut, R.A., and Turenne, S., J. Electron. Mater., 2012, vol. 41, no. 6, pp. 1227–1231. https://doi.org/10.1007/s11664-011-1895-3
  9. Shtern, M., Rogachev, M., Shtern, Y., Sherchenkov, A., Babich, A., Korchagin, E., and Nikulin, D., J. Alloys Compd., 2021, vol. 877, pp. 160328-1–160328-13. https://doi.org/10.1016/j.jallcom.2021.160328
  10. Shtern, M.Yu., Karavaev, I.S., Rogachev, M.S., Shtern, Yu.I., Mustafoev, B.R., Korchagin, E.P., and Kozlov, A.O., Fiz. Tekh. Poluprovodn., 2022, vol. 1, pp. 31–37. https://doi.org/10.21883/FTP.2022.01.51808.24
  11. Sviridov, V.V., Khimicheskoe osazhdenie metallov is vodnykh rastvorov (Electroless Metal Plating from Aqueous Solutions), Minsk: Universitet, 1987, pp. 7–10.
  12. Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton: CRC, 2003, 84th ed., p. 1989.
  13. Sudagar, J., Lian, J., and Sha, W., J. Alloys Compd., 2013, vol. 571, pp. 183–204. https://doi.org/10.1016/j.jallcom.2013.03.107
  14. Surface and Interface Science, Wandelt, K., Ed., Weinheim: Wiley–VCH, .