Examples



mdbootstrap.com



 
Статья
2021

Normal Waves in an Electromagnetic Metachiral Isotropic Medium with Losses


V. V. FisanovV. V. Fisanov
Российский физический журнал
https://doi.org/10.1007/s11182-021-02196-7
Abstract / Full Text

Electromagnetic plane waves in an isotropic absorbing chiral medium (chiral metamaterial) are considered. The Drude–Born–Fёdorov system of constitutive equations with complex values of the permittivity, the permeability, and the chirality parameter is applied. The difference between forward and backward normal waves is delineated by the introduction of a special parameter – the wave type identifier. Analytical expressions for the real and imaginary parts of the wave numbers of homogeneous normal waves are presented.

Author information
  • Siberian Physical-Technical Institute at Tomsk State University, Tomsk, RussiaV. V. Fisanov
  • National Research Tomsk State University, Tomsk, RussiaV. V. Fisanov
  • Institute of Physical Material Science of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, RussiaV. V. Fisanov
References
  1. M. Schäferling, Chiral Nanophotonics, Springer, Cham, Switzerland (2017).
  2. J. T. Collins, C. Kuppe, D. C. Hooper, et al., Adv. Opt. Mater., 5, No. 16, 1700182 (2017); DOI: https://doi.org/10.1002/adom.201700182.
  3. Y. Ma, M. Pu, X. Li, et al., Nanomaterials, 7, No. 5, 116 (2017); DOI: https://doi.org/10.3390/nano7050116.
  4. C. Caloz and A. Sihvola, Electromagnetic Chirality, arXiv:1903.09087v1[physics.optics] (2019).
  5. S. B. Liao and G. L. Yin, Appl. Phys. Lett., 62, No. 20, 2480–2482 (1993); DOI: https://doi.org/10.1063/1.109325.
  6. F. Ge, J. Zhu, and L. Chen, Int. J. Infrared Milli. Waves, 17, No. 2, 449–455 (1996); DOI: https://doi.org/10.1007/BF02088166.
  7. G.-Q. Wang, P. Zhang, Z.-L. Liu, and K.-L. Yao, Appl. Surf. Sci., 225, Nos. 1–4, 78–85 (2004); DOI: https://doi.org/10.1016/j.apsusc.2003.09.047.
  8. A. N. Lagar’kov, V. N. Kisel’, and V. N. Semenenko, Radiotekh. Elektron., 57, No. 10, 1119–1127 (2012).
  9. I. Semchenko, A. Balmakov, S. Khakhomov, and S. Tretyakov, Phys. Rev. B, 97, No. 1, 014432-1–014432-8 (2018); DOI: https://doi.org/10.1103/PhysRevB.97.014432.
  10. J. A. Kong, Theory of Electromagnetic Waves, J. Wiley & Sons, New York (1975).
  11. V. G. Veselago, Fiz. Tverd. Tela, 8, No. 12, 3571–3574 (1966).
  12. V. V. Fisanov, Radiotekh. Elektron., 52, No. 9, 1089–1091 (2007).
  13. V. V. Fisanov, Russ. Phys. J., 57, No. 5, 691–696 (2014).
  14. V. V. Fisanov, Russ. Phys. J., 57, No. 12, 1770–1775 (2014).
  15. C. F. Bohren, Chem. Phys. Lett., 21, No. 3, 458–462 (1974); DOI: https://doi.org/10.1016/0009-2614(74)85144-4.
  16. V. V. Fisanov, Russ. Phys. J., 57, No. 10, 1336–1341 (2014).
  17. A. Sihvola, Microwave Opt. Technol. Lett., 31, No. 6, 423–426 (2001); DOI: https://doi.org/10.1002/mop.10053.
  18. V. V. Fisanov, Dokl. TUSURa, 21, No. 4, 7–10 (2018); DOI: https://doi.org/10.21293/1818-0442-2018-21-4-7-10.