Examples



mdbootstrap.com



 
Статья
2019

Heat-Stable Salts and Methods for Their Removal from Alkanolamine Carbon Dioxide Absorbents (Review)


S. D. BazhenovS. D. Bazhenov, E. G. NovitskiiE. G. Novitskii, V. P. VasilevskiiV. P. Vasilevskii, E. A. GrushevenkoE. A. Grushevenko, A. A. BienkoA. A. Bienko, A. V. VolkovA. V. Volkov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219080019
Abstract / Full Text

Absorption using aqueous solutions of alkanolamines is the most widely used procedure for removal of carbon dioxide from natural gas, flue gases from power-generating facilities, and other mixtures. Its main drawback is degradation/deactivation of alkanolamine under the process conditions (high temperatures, presence of oxygen and other impurities) with the formation of heat-stable salts consisting of alkanolammonium cation and anions of organic and inorganic acids. The main operation problems caused by heat-stable salts are considered in the review. Three main methods for removal of heat-stable salts from alkanolamine adsorbents are described in detail: distillation, ion exchange, and electrodialysis. The main characteristics of these methods and their advantages and drawbacks are described, and a comparative analysis is made. The history and state-of-the art of studies within the framework of each method are presented.

Author information
  • Topchiev Institute of Petrochemical Synthesis, Moscow, 119991, RussiaS. D. Bazhenov, E. G. Novitskii, V. P. Vasilevskii, E. A. Grushevenko & A. V. Volkov
  • PAO VNIPIgasdobycha, Moscow, 119415, RussiaA. A. Bienko
References
  1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri, R. and Meyer, L., Eds., Geneva (Switzerland): IPCC, 2014.
  2. Gozalpour, F., Ren, S.R., and Tohidi, B., Oil Gas Sci. Technol., 2005, vol. 60, no. 3, pp. 537–546. https://doi.org/10.2516/ogst:2005036.
  3. Shi, J.Q. and Durucan, S., Oil Gas Sci. Technol., 2005, vol. 60, no. 3, pp. 547–558. https://doi.org/10.2516/ogst:2005037.
  4. Aresta, M., Dibenedetto, A., and Angelini, A., J. CO 2 Util., 2013, vols. 3–4, pp. 65–73. https://doi.org/10.1016/j.jcou.2013.08.001.
  5. Carbon Dioxide Utilisation: Closing the Carbon Cycle, Styring, P., Quadrelli, E.A., and Armstrong, K., Eds., Amsterdam: Elsevier, 2015, pp. 97–113.
  6. Lyadov, A.S. and Khadzhiev, S.N., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1727–1737. https://doi.org/10.1134/S1070427217110015.
  7. Solov’ev, S.A., Zatelepa, R.N., Gubaren, E.V., Strizhak, P.E., and Moroz, E.M., Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1883–1887. https://doi.org/10.1134/S1070427207110201.
  8. Radman, R., Aouissi, A., Al Kahtani, A., and Mekhamer, W., Petrol. Chem., 2017, vol. 57, no. 1, pp. 79–84. https://doi.org/10.1134/S0965544117010108.
  9. Gerzeliev, I.M., Usachev, N.Ya., Popov, A.Yu., and Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 6, pp. 411–417. https://doi.org/10.1134/S0965544111060168.
  10. Wang, H., Zhu, R., Wang, X., and Li, Z., Miner. Process. Extr. Metall., 2017, vol. 126, nos. 1–2, pp. 47–53. https://doi.org/10.1080/03719553.2016.1255401.
  11. Chemistry and Technology of Soft Drinks and Fruit Juices, Ashhurst, P.R., Ed., Chichester: Wiley, 2016, 3rd ed., pp. 146–173.
  12. Singh, P., Wani, A.A., Karim, A.A., and Langowski, H.C., Int. J. Dairy Technol., 2012, vol. 65, no. 2, pp. 161–177. https://doi.org/10.1111/j.1471-0307.2011.00744.x.
  13. Al-Mutaz, I.S. and Al-Ghunaimi, M.A., in Proc. IDA World Congr. on Desalination and Water Reuse, Bahrain, Oct. 26–31, 2001, pp. 1–12.
  14. Joss, A., Baenninger, C., Foa, P., Koepke, S., Krauss, M., McArdell, C., Rottermann, K., Wei, Yu., Zapata, A., and Siegrist, H., Water Res., 2011, vol. 45, no. 18, pp. 6141–6151. https://doi.org/10.1016/j.watres.2011.09.011.
  15. Ogston, M., Young, J., Jansson, A.-C., and Steel, K., in Proc. 64th Appita Annual Conf. and Exibition, Melbourne (Australia), April 18–21, 2010, pp. 215–219.
  16. Sajid, M.S., Caswell, J., Bhatti, M.I., Baig, M.K., and Miles, W.F.A., Colorect. Disease, 2015, vol. 17, no. 2, pp. 111–123. https://doi.org/10.1111/codi.12837.
  17. Julu, P.O.O., Shah, M., Monro, J.A., and Puri, B.K., Med. Hypoth., 2018, vol. 110, pp. 101–104. https://doi.org/10.1016/j.mehy.2017.11.010.
  18. Carbon Dioxide Recovery and Utilization, Aresta, M., Ed., Luxemburg: Springer, 2013, pp. 293–312.
  19. Avilov, A.E., Leites, I.L., Kondyrev, B.I., and Belov, A.V., Khim. Prom-st. Segodnya, 2010, vol. 5, pp. 51–56.
  20. Kumeeva, T.Y., Prorokova, N.P., Kholodkov, I.V., Prorokov, V.N., Buyanovskaya, A.G., Kabayeva, N.M., Gumileva, L.V., Barakovskaya, L.G., and Takazova, R.U., Russ. J. Appl. Chem., 2012, vol. 85, no. 1, pp. 144–149. https://doi.org/10.1134/S1070427212010284.
  21. Sovizi, M.R. and Dehghani, H., Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 2084–2090. https://doi.org/10.1134/S1070427216120223.
  22. Dense Phase Carbon Dioxide: Food and Pharmaceutical Applications, Balaban, M.O. and Ferrentino, G., Eds., Chichester: Wiley, 2012, pp. 199–226.
  23. Handbook of Laser Technology and Applications, vol. II: Laser Design and Laser Systems, Webb, C.E. and Jones, J.D.C., Eds., Bristol (USA): Inst.of Physics, 2012, pp. 751–790.
  24. Jones, C.A., Zweber, A., DeYoung, J.P., McClain, J.B., Carbonell, R., and DeSimone, J.M., Crit. Rev. Solid State Mater. Sci., 2004, vol. 29, nos. 3–4, pp. 97–109. https://doi.org/10.1080/10408430490888968.
  25. Yaashikaa, P.R., Kumar, P.S., Varjani, S.J., and Saravanan, A., J. CO 2 Util., 2019, vol. 33, pp. 131–147. https://doi.org/10.1016/j.jcou.2019.05.017.
  26. Olajire, A.A., J. CO 2 Util., 2013, vols. 3–4, pp. 74–92. https://doi.org/10.1016/j.jcou.2013.10.004.
  27. Patent US 1783901, Publ. 1930.
  28. Rochelle, G.T., Science, 2009, vol. 325, no. 5948, pp. 1652–1654. https://doi.org/10.1126/science.1176731.
  29. Kohl, A. and Nielsen, R., Gas Purification, Houston, TX (USA): Gulf, 1997, pp. 40–269.
  30. Absorption-Based Post-Combustion Capture of Carbon Dioxide, Feron, P.H.M., Ed., Duxford: Woodhead, 2016, 1st ed., pp. 757–778.
  31. Liang, Z., Rongwong, W., Liu, H., Fu, K., Gao, H., Cao, F., Zhang, R., Sema, T., Henni, A., Sumon, K., Nath, D., Gelowitz, D., Srisang, W., Saiwan, C., Benamor, A., Al-Marri, M., Shi, H., Supap, T., Chan, C., Zhou, Q., Abu-Zahra, M., Wilson, M., Olson, W., Idem, R., and Tontiwachwuthikul, P., Int. J. Greenh. Gas Control, 2015, vol. 40, pp. 26–54. https://doi.org/10.1016/j.ijg-gc.2015.06.017.
  32. Idem, R., Supap, T., Shi, H., Gelowitz, D., Ball, M., Campbell, C., and Tontiwachwuthikul, P., Int. J. Greenh. Gas Control., 2015, vol. 40, pp. 6–25. https://doi.org/10.1016/j.ijggc.2015.06.005.
  33. Caplow, M., J. Am. Chem. Soc., 1968, vol. 90, no. 24, pp. 6795–6803. https://doi.org/10.1021/ja01026a041.
  34. Danckwerts, P.V., Chem. Eng. Sci., 1979, vol. 34, no. 4, pp. 443–446. https://doi.org/10.1016/0009-2509(79)85087-3.
  35. Crooks, J.E. and Donnellan, J.P., J. Chem. Soc., Perkin Trans. 2, 1989, vol. 4, pp. 331–333. https://doi.org/10.1039/P29890000331.
  36. Ma’mun, S., Svendsen, H.F., Hoff, K.A., and Juliussen, O., Energy Convers. Manag., 2007, vol. 48, no. 1, pp. 251–258. https://doi.org/10.1016/j.enconman.2006.04.007.
  37. Versteeg, G.F. and van Swaaj, W.P.M., Chem. Eng. Sci., 1988, vol. 43, no. 3, pp. 587–591. https://doi.org/10.1016/0009-2509(88)87017-9.
  38. Sreenivasulu, B., Gayatri, D.V., Sreedhar, I., and Raghavan, K.V., Renew. Sustain. Energy Rev., 2015, vol. 41, pp. 1324–1350. https://doi.org/10.1016/j.rser.2014.09.029.
  39. Leung, D.Y.C., Caramanna, G., and Maroto-Valer, M.M., Renew. Sustain. Energy Rev., 2014, vol. 39, pp. 426–443. https://doi.org/10.1016/j.rser.2014.07.093.
  40. Materials and Processes for Energy: Communicating Current Research and Technological Developments, Mendez-Vilas, A., Ed., Badajoz: Formatex Research Center, 2013, pp. 923–934.
  41. Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C., Chem. Eng. Res. Des., 2011, vol. 89, no. 9, pp. 1609–1624. https://doi.org/10.1016/j.cherd.2010.11.005.
  42. Bailey, B.W. and Feron, P.H.M., Oil Gas Sci. Technol., 2005, vol. 60, no. 3, pp. 461–474. https://doi.org/10.2516/ogst:2005028.
  43. Mangalapally, H.P., Notz, R., Asprion, N., Sieder, G., Garcia, H., and Hasse, H., Int. J. Greenh. Gas Control, 2012, vol. 8, pp. 205–216. https://doi.org/10.1016/j.ijggc.2012.02.014. Carbon Manag
  44. Liang, Z.H., Sanpasertparnich, T., Tontiwachwuthikul, P., Gelowitz, D., and Idem, R., Carbon Manag., 2011, vol. 2, no. 3, pp. 265–288. https://doi.org/10.4155/cmt.11.19.
  45. Abu-Zahra, M.R.M., Niederer, J.P.M., Feron, P.H.M., and Versteeg, G.F., Int. J. Greenh. Gas Control, 2007, vol. 1, no. 2, pp. 135–142. https://doi.org/10.1016/S1750-5836(07)00032-1.
  46. Wang, M., Joel, A.S., Ramshaw, C., Eimer, D., and Musa, N.M., Appl. Energy, 2015, vol. 158, pp. 275–291. https://doi.org/10.1016/j.apenergy.2015.08.083.
  47. Bazhenov, S.D. and Lyubimova, E.S., Petrol. Chem., 2016, vol. 56, no. 10, pp. 889–914. https://doi.org/10.1134/S0965544116100029.
  48. Bazhenov, S., Bildyukevich, A., and Volkov, A., Fibers, 2018, vol. 6, no. 4, p. 76. https://doi.org/10.3390/fib6040076.
  49. Supap, T., Saiwan, C., Idem, R., and Tontiwachwuthikul, P., Carbon Manag., 2011, vol. 2, no. 5, pp. 551–566. https://doi.org/10.4155/cmt.11.55.
  50. Reynolds, A.J., Verheyen, T.V., Adeloju, S.B., Meuleman, E., and Feron, P., Environ. Sci. Technol., 2012, vol. 46, no. 7, pp. 3643–3654. https://doi.org/10.1021/es204051s.
  51. Dutcher, B., Fan, M., and Russell, A.G., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 4, pp. 2137–2148. https://doi.org/10.1021/am507465f.
  52. Rochelle, G.T., Curr. Opin. Chem. Eng., 2012, vol. 1, no. 2, pp. 183–190. https://doi.org/10.1016/j.coche.2012.02.004.
  53. Nabokov, S.V., Shklyar, R.L., and Petkina, N.P., Vesti Gaz. Nauki, 2015, no. 1(21), pp. 22–28.
  54. Davis, J. and Rochelle, G., Energy Procedia, 2009, vol. 1, no. 1, pp. 327–333. https://doi.org/10.1016/j.egypro.2009.01.045.
  55. Léonard, G., Crosset, C., Toye, D., and Heyen, G., Comput. Chem. Eng., 2015, vol. 83, pp. 121–130. https://doi.org/10.1016/j.compchemeng.2015.05.003.
  56. Veltman, K., Singh, B., and Hertwich, E.G., Environ. Sci. Technol., 2010, vol. 44, no. 4, pp. 1496–1502. https://doi.org/10.1021/es902116r.
  57. Lim, J., Scholes, C.A., Dumée, L.F., and Kentish, S.E., Int. J. Greenh. Gas Control, 2014, vol. 30, pp. 34–41. https://doi.org/10.1016/jijggc.2014.08.020.
  58. Valtcheva, I.B., Kumbharkar, S.C., Kim, J.F., Bhole, Yo, and Livingston, A.G., J. Membr. Sci., 2014, vol. 457, pp. 62–72. https://doi.org/10.1016/j.memsci.2013.12.069.
  59. Gouedard, C., Picq, D., Launay, F., and Carrette, P.L., Int. J. Greenh. Gas Control, 2012, vol. 10, pp. 244–270. https://doi.org/10.1016/j.ijggc.2012.06.015.
  60. Dumée, L., Scholes, C., Stevens, G., and Kentish, S., Int. J. Greenh. Gas Control, 2012, vol. 10, pp. 443–455. https://doi.org/10.1016/j.ijggc.2012.07.005.
  61. ElMoudir, W., Supap, T., Saiwan, C., Idem, R., and Tontiwachwuthikul, P., Carbon Manag., 2012, vol. 3, no. 5, pp. 485–509. https://doi.org/10.4155/cmt.12.55.
  62. Wang, T., Hovland, J., and Jens, K.-J., J. Environ. Sci., 2015, vol. 27, pp. 276–289. https://doi.org/10.1016/j.jes.2014.06.037.
  63. Cummings, A.L. and Mecum, S.M., in Proc. 50th Laurance Reid Gas Conditioning Conf., Norman, OK (USA), 2000, pp. 9–20.
  64. Hatcher, N.A., Keller, A.E., Weiland, R.H., and Sivasubramanian, M.S., in Proc. 56th Laurance Reid Gas Conditioning Conf. Norman, OK (USA), 2006, pp. 259–274.
  65. Du Part, M.S., Bacon, T.R., and Edwards, D.J., Hydrocarb. Process., 1993, vol. 72, no. 5, pp. 89–94.
  66. Harston, J. and Ropital, F., Amine Unit Corrosion in Refineries, Amsterdam: Elsevier, 2007, pp. 3–8.
  67. Saiwan, C., Supap, T., Idem, R., and Tontiwachwuthikul, P., Carbon Manag., 2011, vol. 2, no. 6, pp. 659–675. https://doi.org/10.4155/cmt.11.63.
  68. Kittel, J. and Gonzalez, S., Oil Gas Sci. Technol., 2014, vol. 65, no. 5, pp. 915–929. https://doi.org/10.2516/ogst/2013161.
  69. Rooney, P.C., Bacon, T.R., and DuPart, M.S., Hydrocarb. Process., 1997, vol. 76, no. 4, pp. 65–70.
  70. Tanthapanichakoon, W., Veawab, A., and McGarvey, B., Ind. Eng. Chem. Res., 2006, vol. 45, no. 8, pp. 2586–2593. https://doi.org/10.1021/ie050575a.
  71. Davoudi, M., Safadoust, A.R., Akbar Mansoori, S.A., and Mottaghi, H.R., J. Nat. Gas Sci. Eng., 2014, vol. 19, pp. 116–124. https://doi.org/10.1016/jjngse. Cited 1 May, 2014.
  72. Goff, G.S. and Rochelle, G.T., Ind. Eng. Chem. Res., 2004, vol. 43, no. 20, pp. 6400–6408. https://doi.org/10.1021/ie0400245.
  73. Goff, G.S. and Rochelle, G.T., Ind. Eng. Chem. Res., 2006, vol. 45, no. 8, pp. 2513–2521. https://doi.org/10.1021/ie0490031.
  74. Sexton, A. and Rochelle, G.T., Int. J. Greenh. Gas Control, 2009, vol. 3, no. 6, pp. 704–711. https://doi.org/10.1016/j.ijggc.2009.08.007.
  75. Vakk, E.G., Shuklin, G.V., and Leites, I.L., Poluchenie tekhnologicheskogo gaza dlya polucheniya ammiaka, metanola, vodoroda i vysshikh uglevodorodov. Teoreticheskie osnovy, tekhnologiya, katalizatory, oborudovanie, sistemy upravleniya (Production of Process Gas for Producing Ammonia, Methanol, Hydrogen, and Higher Hydrocarbons. Theoretical Principles, Technology, Catalysts, Equipment, Control Systems), Moscow: Galleya, 2011, pp. 288–308.
  76. Cummings, A.L., Smith, G.D., and Nielsen, D.K., in Proc. 57th Laurance Reid Gas Conditioning Conf., Norman, OK (USA), 2007, pp. 227–244.
  77. Thitakamol, B. and Veawab, A., Ind. Eng. Chem. Res., 2008, vol. 47, no. 1, pp. 216–225. https://doi.org/10.1021/ie070366l.
  78. Thitakamol, B., Veawab, B., and Aroonwilas, A., Energy Procedia, 2009, vol. 1, no. 1, pp. 1381–1386. https://doi.org/10.1016/j.egypro.2009.01.181.
  79. Von Phul, S.A., in Proc. 52nd Laurance Reid Gas Conditioning Conf., Norman, OK (USA), 2002, pp. 9–42.
  80. Von Phul, S.A., in Proc. 51st Laurance Reid Gas Conditioning Conf., Norman, OK (USA), 2001, pp. 251–280.
  81. Baumeister, E.R., Souza, R.C., and Rusque, C.I., in Proc. XIX Int. Gas Convention AVPG 2010, Caracas (Venezuela), 2010, pp. 1–7.
  82. Patent US 2701750, Publ. 1955.
  83. Scheirman, W.L., Hydrocarb. Process., 1973, vol. 52, no. 8, pp. 95–96.
  84. Patent US 5912387, Publ. 1999.
  85. Asperger, R.G., Liu, H.J., and Dean, J.W., in Proc. Am. Inst. of Chem. Eng., 1995 Spring Meet., Houston, TX (USA), 1995, pp. 1–21.
  86. Liu, H.J., Dean, J.W., and Bosen, S.F., Proc. Corrosion—National Association of Corrosion Engineers Annual Conf., Orlando, Florida (USA), 1995, pp. 1–13.
  87. Cummings, A.L. and Mecum, S.M., Hydrocarb. Process., 1998, vol. 77, no. 8, pp. 63–67.
  88. The Dow Chemical Company. Gas Conditioning Fact Book, Midland, Michigan (USA): Dow Chemical, 1962, pp. 145–234.
  89. Bedell, S.A., Worley, C.M., Darst, K., and Simmons, K., Int. J. Greenh. Gas Control, 2011, vol. 5, no. 3, pp. 401–404. https://doi.org/10.1016/jijggc.2010.03.005.
  90. Patent US 5152887, Publ. 1992.
  91. Patent US 5158649, Publ. 1992.
  92. Patent US 5389208, Publ. 1995.
  93. Patent US 5441605, Publ. 1995.
  94. Patent US 5993608, Publ. 1999.
  95. Patent US 6508916, Publ. 2003.
  96. Shklyar, R.L., Nabokov, S.V., and Petkina, N.P., Gaz. Prom–st., 2012, no. 5, pp. 87–89.
  97. Patent RU 2491981, Publ. 2013.
  98. Patent RU 2487113, Publ. 2013.
  99. Patent US 6152994, Publ. 2000.
  100. Patent US 2007/0148068 A1, Publ.2007.
  101. Patent US 8425849 B2, Publ. 2013.
  102. ElMoudir, W., Fairchild, J., and Aboudheir, A., Energy Procedia, 2014, vol. 63, pp. 6156–6165. https://doi.org/10.1016/j.egypro.2014.11.647.
  103. Ju, H., ElMoudir, W., Aboudheir, A., and Mahinpey, N., Int. J. Greenh. Gas Control, 2018, vol. 74, pp. 174–181. https://doi.org/10.1016/j.ijggc.2018.05.004.
  104. Patent US 2012/0125196 A1, Publ. 2012.
  105. Gorset, O. and Andersson, V., Energy Procedia, 2013, vol. 37, pp. 6357–6364. https://doi.org/10.1016/j.egypro.2013.06.565.
  106. Gorset, O., Knudsen, J.N., Bade, O.M., and Askestad, I., Energy Procedia, 2014, vol. 63, pp. 6267–6280. https://doi.org/10.1016/j.egypro.2014.11.658.
  107. Patent US 2797188, Publ. 1957.
  108. Patent US 4795565, Publ. 1989.
  109. Patent US 5268155, Publ. 1993.
  110. Patent US 6245128 B1, Publ. 1991.
  111. Patent US 5292493, Publ. 1994.
  112. Patent US 4970344, Publ. 1990.
  113. Patent US 5045291, Publ. 1991.
  114. Patent US 5162084, Publ. 1992).
  115. Patent US 5788864, Publ. 1998.
  116. Patent US 5006258, Publ. 1991.
  117. Patent US 5368818, Publ. 1994.
  118. Cummings, A.L., Mecum, S.M., and Veatch, F.C., in Proc. Gas Processors Association’s European Chapter Conf., 2000, pp. 1–13.
  119. Cummings, A.L., Street, D., and Lawson, G., in Proc. Brimestone Sulfur Conf., Banff, Alberta (Canada), 2000, pp. 1–24.
  120. Patent US 3385788, Publ. 1968.
  121. Patent US 4673507, Publ. 1987.
  122. Jouravleva, D., Davy, P., and Sheedy, M., in Proc. 50th Laurance Reid Gas Conditioning Conf., Norman, OK (USA), 2000, pp. 281–298.
  123. Shao, J. and Vaz, L., Chem. Ind. Digest, 2007, vol. 20, no. 11, pp. 53–61.
  124. Dandekar, S. and Shao, J., Petrol. Technol. Quart., 2011, vol. 16, no. 5, pp. 81–87.
  125. Petrov, I.V., Pavlov, M.L., Spashchenko, A.Yu., and Gus’kov, B.O., Neftegaz. Delo, 2013, vol. 11, no. 4, pp. 145–149.
  126. Pal, P., Banat, F., and AlShoaibi, A., J. Nat. Gas Sci. Eng., 2013, vol. 15, pp. 14–21. https://doi.org/10.1016/j.jngse.2013.08.001.
  127. Seelarak, C., Saiwan, C., Supap T., Idem R., Tontiwachwuthikul, P., and Wongpanit, P., Energy Procedia, 2013, vol. 37, pp. 1202–1208. https://doi.org/10.1016/j.egy-pro.2013.05.218.
  128. Pal, P. and Banat, F., J. Phys. Chem. Biophys., 2014, vol. 4, no. 1, pp. 1–5. https://doi.org/10.4172/2161-0398.1000135.
  129. Pal, P., Edathil, A.A., and Banat, F., Polym. Bull., 2019, vol. 76, no. 1, pp. 103–118. https://doi.org/10.1007/s00289-018-2376-0.
  130. Edathil, A.A., Pal, P., and Banat, F., Appl. Clay Sci., 2018, vol. 156, pp. 213–223. https://doi.org/10.1016/j.clay.2018.02.015.
  131. Zabolotskii, V.I., Gnusin, N.P., Pis’menskii, V.F., Omel’chenko, Yu.N., Strelets, Yu.G., and Kovalev, A.S., Zh. Prikl. Khim., 1982, vol. 55, no. 5, pp. 1105–1110.
  132. Zabolotskii, V.I., Gnusin, N.P., El’nikova, L.F., and Omel’chenko, Yu.N., Zh. Prikl. Khim., 1985, vol. 58, no. 10, pp. 2396–2399.
  133. Zabolotskii, V., Sheldeshov, N., and Melnikov, S., Desalination, 2014, vol. 342, pp. 183–203. https://doi.org/10.1016/j.desal.2013.11.043.
  134. Patent US 2768945, Publ. 1956.
  135. Patent US 4814051, Publ. 1989.
  136. Patent US 4808284, Publ. 1989.
  137. Price, J. and Burns, D., Hydrocarb. Process., 1995, vol. 74, no. 8, pp. 140–141.
  138. Patent US 5910611, Publ. 1999.
  139. Burns, D. and Gregory, R.A., in Proc. 45th Laurance Reid Gas Conditioning Conf., Norman, OK (USA), 1995, pp. 213–228.
  140. Patent US 5292407, Publ. 1994.
  141. Patent US 6517600 B2, Publ. 2003.
  142. Parisi, P. and Bosen, S., in Proc. 85th Gas Processors Associations’s Annual Convention, Grapevine, TX (USA), 2006, pp. 1–15.
  143. Parisi, P. and Bosen, S., in Proc. 56th Laurance Reid Gas Conditioning Conf., Norman, OK (USA), 2006, pp. 301–315.
  144. Meng, H., Zhang, S., Li, C., and Li, L., J. Membr. Sci., 2008, vol. 322, pp. 436–440. https://doi.org/10.1016/j.memsci.2008.05.072.
  145. Wang, Y., Li, W., Yan, H., and Xu, T., J. Ind. Eng. Chem., 2018, vol. 57, pp. 356–362. https://doi.org/10.1016/j.jiec.2017.08.043.
  146. Vitse, F., Baburao, B., Dugas, R., Czarnecki, L., and Schubert, C., Energy Procedia, 2011, vol. 4, pp. 5527–5533. https://doi.org/10.1016/j.egypro.2011.02.539.
  147. Lim, J., Aguiar, A., Scholes, C.A., Dumée, L.F., Stevens, G.W., and Kentish, S.E., Ind. Eng. Chem. Res., 2014, vol. 53, no. 49, pp. 19313–19321. https://doi.org/10.1021/ie503506b.
  148. Lim, J., Aguiar, A., Reynolds, A., Pearson, P., Kentish, S.E., and Meuleman, E., Int. J. Greenh. Gas Control, 2015, vol. 42, pp. 545–553. https://doi.org/10.1016/j.ijggc.015.09.004.
  149. Vasilevskii, V.P., Volkov, V.V., and Novitskii, E.G., Krit. Tekhnol. Membr., 2009, vol. 44, no. 4, pp. 14–17.
  150. Bazhenov, S., Rieder, A., Schallert, B., Vasilevsky, V., Unterberger, S., Grushevenko, E., Volkov, V., and Volkov, A., Int. J. Greenh. Gas Control, 2015, vol. 42, pp. 593–601. https://doi.org/10.1016/jijggc.2015.09.015.
  151. Bazhenov, S., Vasilevsky, V., Rieder, A., Unterberger, S., Grushevenko, E., Volkov, V., Schallert, B., and Volkov, A., Energy Procedia, 2014, vol. 63, pp. 6349–6356. https://doi.org/10.1016/j.egypro.2014.11.668.
  152. Volkov, A., Vasilevsky, V., Bazhenov, S., Volkov, V., Rieder, A., Unterberger, S., and Schallert, B., Energy Procedia, 2014, vol. 51, pp. 148–153. https://doi.org/10.1016/j.egypro.2014.07.016.
  153. Grushevenko, E.A., Bazhenov, S.D., Vasilevskii, V.P., Novitskii, E.G., and Volkov, A.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 4, pp. 602–610. https://doi.org/10.1134/S1070427218040110.
  154. Novitsky, E.G., Vasilevsky, V.P., Bazhenov, S.D., Grushevenko, E.A., Vasilyeva, V.I., and Volkov, A.V., Petrol. Chem., 2014, vol. 54, no. 8, pp. 680–685. https://doi.org/10.1134/S0965544114080118.
  155. Radgen, P., Rode, H., Reddy, S., and Yonkoski, J., Energy Procedia, 2014, vol. 63, pp. 1585–1594. https://doi.org/10.1016/j.egypro.2014.11.168.
  156. Reddy, S., Scherffius, J.F., Yonkoski, J., Ragden, P., and Rode, H., Energy Procedia, 2013, vol. 37, pp. 6216–6225. https://doi.org/10.1016/j.egypro.2013.06.550.
  157. Thitakamol, B., Veawab, A., and Aroonwilas, A., Int. J. Greenh. Gas Control, 2007, vol. 1, no. 3, pp. 318–342. https://doi.org/10.1016/S1750-5836(07)00042-4.
  158. Nurrokhmah, L., Mezher, T., and Abu-Zahra, M.R.M., Environ. Sci. Technol., 2013, vol. 47, no. 23, pp. 13644–13651. https://doi.org/10.1021/es4027198.
  159. Nurrokhmah, L., Mezher, T., and Abu-Zahra, M.R.M., Energy Procedia, 2013, vol. 37, pp. 751–758. https://doi.org/10.1016/j.egypro.2013.05.164.
  160. Sexton, A., Dombrowski, K., Nielsen, P., Rochelle, G., Fisher, K., Youngerman, J., Chen, E., Singh, P., and Davison, J., Energy Procedia, 2014, vol. 63, pp. 926–939. https://doi.org/10.1016/j.egypro.2014.11.102.
  161. Vasil’eva, V.I., Pismenskaya, N.D., Akberova, E.M., and Nebavskaya, K.A., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 8, pp. 1293–1299. https://doi.org/10.1134/S0036024414080317.
  162. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han, J., Sistat, P., and Pourcelly, G., Desalination, 2014, vol. 342, pp. 85–106. https://doi.org/10.1016/j.desal.2014.01.008.
  163. Belashova, E.D., Melnik, N.A., Pismenskaya, N.D., Shevtsova, K.A., Nebavsky, A.V., Lebedev, K.A., and Nikonenko, V.V., Electrochim. Acta, 2012, vol. 59, pp. 412–423. https://doi.org/10.1016/j.electacta.2011.10.077.
  164. Korzhova, E., Pismenskaya, N., Lopatin, D., Baranov, O., Dammak, L., and Nikonenko, V., J. Membr. Sci., 2016, vol. 500, pp. 161–170. https://doi.org/10.1016/j.memsci.2015.11.018.