Examples



mdbootstrap.com



 
Статья
2017

MWCNTs@Rubeanic acid nanosensor for ultra sensitive quantification of bismuth in groundwater and soil


Seyede Shima Mortazavi Seyede Shima Mortazavi , Abbas Farmany Abbas Farmany
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516060033
Abstract / Full Text

Voltammetric determination of bismuth was made using a carbon paste electrode modified with carbon nanotube-encapsulated rubeanic acid. The anodic stripping voltammetry on the MWCNTs@Rubeanic acid composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for bismuth. Comparing a non-encapsulated MWCNTs composite electrode with an in-situ capsulated MWCNTs@Rubeanic electrode, the MWCNTs@Rubeanic composite electrode exhibited superior performance due to its complexation with Bi ion. The limit of detection of the sensor was 0.8 ng/mL.

Author information
  • Department of Chemistry, Young Researchers&Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran

    Seyede Shima Mortazavi & Abbas Farmany

References
  1. Kokkinos, C., Economou, A., and Koupparis, M., Talanta, 2009, vol. 77, pp. 1137–1142.
  2. Kokkinos, C., Economou, A., Raptis, I., and Speliotis, T., Anal. Chim. Acta, 2009, vol. 622, pp. 111–118.
  3. Abbasi, S., Farmany, A., and Mortazavi, S.S., Electroanalysis, vol. 22, pp. 2884–2888.
  4. Abbasi, S., Daneshfar, A., Hamdghadareh, S., and Farmany, A., Int. J. Electrochem. Sci., 2011, vol. 6, pp. 4843–4852.
  5. Wang, J., Lu, J., Hocevar, S.B., Farias, P.A.M., and Ogorevic, B., Anal. Chem., 2000, vol. 72, p. 3218.
  6. Honeychurch, K.C., Hawkins, D.M., Hart, J.P., and Cowell, D.C., Talanta, 2002, vol. 57, p. 565.
  7. Legeai, S., Soropogui, K., Cretinon, M., Vittori, O., Oliveria, A.H.D., Barbier, F., and Loustalot, M.F.G., Anal. Bioanal. Chem., 2005, vol. 383, p. 839.
  8. Heidarimoghadam, R. and Farmany, A., Mater. Sci. Eng., Ser. C, 2016, vol. 58, pp. 1242–1245.
  9. Pecev, T.G., Igov, R.P., Stankov-Jovanović, V.P., and Mitić, V.D., J. Serb. Chem. Soc., 1995, vol. 55, p. 64.
  10. Zhang, L., Mulrooney, S.B., Leung, A.F.K., Zeng, Y., Ko, B.B.C., and Hausinger, R.P., Biometals, 2006, vol. 19, p. 503.
  11. Jin, L., Szeto, K.Y., Zhang, L., Du, W., and Sun, H., J. Inorg. Biochem., 2004, vol. 98, p. 1331.
  12. Mihajlović, R.P., Kaljević, V.M., Vukasinović, M.P., Lj, V., and Mihajlović, I.D., Water SA, 2007, vol. 33, p. 513.
  13. Gemus, G., Filik, H., and Demirata, B., Anal. Chim. Acta, 2005, vol. 547, no. 1, p. 138.
  14. Shiyo, Y., Mitsuhashi, M., Shimizu, T., and Sakurai, S., Analyst, 1992, vol. 117, no. 12, p. 1929.
  15. Ivanova, E., Yan, X.P., and Adams, F., Anal. Chim. Acta, 1997, vol. 354, p. 7.
  16. Giacomelli, M.B.O., Ganzarolli, E.M., and Curtius, A., J. Spectrochim. Acta, Ser. B, 2000, vol. 55, p. 525.
  17. Kang, X., Mai Z., Zou, X., Cai, P., and Mo, J., Anal. Biochem., 2007, vol. 363, pp. 143–150.
  18. Choong, C.L., Milne, W.I., and Teo, K.B.K., Int. J. Mater. Form, 2008, vol. 1, pp. 117–125.
  19. Jiang, F., Wang, S., Lin, J., Jin, H., Zhang, L., Huang, S., and Wang, J., Electrochem. Commun., 2011, vol. 13, pp. 363–365.
  20. Soleimani, M. and Ghahraman Afshar, M., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 8719–8729.
  21. Crespo, G.A., Macho, S., Bobacka, J., and Rius, F.X., Anal. Chem., 2009, vol. 81, p. 676.
  22. Senthilkumar, S. and Saraswathi, R., J. Appl. Electrochem., 2011, vol. 41, p. 909.
  23. Sobhanardakani, S., Farmany, A., and Abbasi, S., J. Ind. Eng. Chem., 2014, vol. 20, 25, pp. 3214–3216.
  24. Izadkhah Farmany, A. and Mortazavi, S.S., J. Ind. Eng. Chem., 2015, vol. 21, pp. 994–996.