Examples



mdbootstrap.com



 
Статья
2018

Investigations Ce Doped MnO2/rGO as High Performance Supercapacitors Material


Yansu WangYansu Wang, Yali ZhanYali Zhan, Xiyang YanXiyang Yan, Zhiling MaZhiling Ma
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517110180
Abstract / Full Text

The novel Ce doped MnO2/rGO composite was fabricated by a simple two-step hydrothermal method reacted for different times. As results, the composite reacted for 1h exhibits better electrochemical performance and rate capacity, the capacitive retention is 85% from 130.44 F g–1 for first cycle decrease to 111.11 F g–1 after 1000 cycles at the current density of 1 A g–1, and 14.7 W h kg–1 of energy density. Moreover, the BET surface area is 243 m2 g–1, and the average pore size is 7.9 nm, which will be convenient for the quick transport and migration of electrolyte ions during the charge–discharge process, and further confirm good rate capability.

Author information
  • Institute of Chemistry and Environmental Science, Hebei University, Bao Ding, Hebei Province, 071002, ChinaYansu Wang, Yali Zhan, Xiyang Yan & Zhiling Ma
References
  1. Knebel, S., Pesic, M., Cho, K., and Mikolajick, T., Ultra-thin ZrO2/SrO/ZrO2 insulating stacks for future dynamic random access memory capacitor applications, J. Appl. Phys., 2015, vol. 117, p. 2241021.
  2. Jiang, J., Liu, J., and Huang, X., Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes, J. Phys. Chem. C, 2010, vol. 114, p. 929.
  3. Xiao, K., Xia, L., Ding, L.-X., and Wang, H., Honeycomb- like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage, J. Mater. Chem. A, 2015, vol. 3, p. 6128.
  4. Iranagh, S.A., Eskandarian, L., and Mohammadi, R., Synthesis of MnO2-polyaniline nanofiber composites to produce high conductive polymer, Synthetic Metals, 2015, vol. 172, p. 49.
  5. Zhao, Y.-Q., Zhao, D.-D., Tang, P.-Y., Wang, Y.-M., and Xu, C.-L., MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy, Mater. Lett., 2012, vol. 76, p. 127.
  6. Li, W., Xu, K., Zou, R., and Hu, J., MnO2 nanoflower arrays with high rate capability for flexible supercapacitors, Chem. ElectroChem., 2014, vol. 1, p. 1003.
  7. Jeong, H.M., Lee, J.W., Shin, W.H., Choi, Y.J., Shin, H.J., Kang, J.K., and Choi, J.W., Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett., 2011, vol. 11, p. 2472.
  8. Nguyen, V.H., Nguyen, T.T., and Shim, J.-J., Rapid one-step synthesis and electrochemical properties of graphene/carbon nanotubes/MnO2 composites, Synthetic Metals, 2015, vol. 199, p. 276.
  9. Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., and Qin, L.-C., Graphene and nanostructured MnO2 composite electrodes for supercapacitors, Carbon, 2011, vol. 49, p. 2917.
  10. Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T., and Wei, F., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater., 2011, vol. 21, p. 2366.
  11. Zhang, Z.-Y., Hu, Z.-A., Yang, Y.-Y., Wang, H.-W., Chang, Y.-Q., Chen, Y.-L., and Lei, Z.-Q., Ce doped Mn3O4 and its electrochemical capacitive behavior, Acta Phys.-Chim. Sin., 2011, vol. 27, pp. 1673–1678.
  12. Wang, X.-L., Zheng, Y.-Y., and Liu, X.-B., Synthesis and electrochemical properties of MnO2 hollow nanospheres, CIESC J., 2015, vol. 66, p. 1201.
  13. Zhang, H., Gu, J., Tong, J., Hu, Y., Guan, B., Hu, B., Zhao, J., and Wang, C., Hierarchical porous MnO2/CeO2 with high performance for supercapacitor electrodes, Chem. Eng. J., 2016, vol. 286, p. 139.
  14. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.
  15. Zhu, C., Guo, S., Fang, Y., and Dong, S., Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS Nano, 2010, vol. 4, p. 2429.
  16. Chen, X.A., Chen, X., Zhang, F., Yang, Z., and Huang, S., One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor, J. Power Sources, 2013, vol. 243, p. 555.
  17. Fan, L.-Q., Liu, G.-J., Wu, J.-H., Liu, L., Lin, J.-M., and Wei, Y.-L., Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes, Electrochimica Acta, 2014, vol. 137, p. 26.
  18. Chen, S., Zhu, J.-W., Wu, X.-D., Han, Q.-F., and Wang, X., Graphene oxide/MnO2 nanocomposites for supercapacitors, ACS NANO, 2010, vol. 4, p. 2822.
  19. Ezeigwe, E.R., Tan, M.T.T., Khiew, P.S., and Siong, C.W., Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior, Ceram. Int., 2015, vol. 41, p. 11418.
  20. Wen, J.G. and Zhou, Z.T., Electrochemical performance of manganese dioxide for supercapacitors materials with neutral aqueous electrolyte, Chin. Manganese Industry, 2004, vol. 22, p. 31.
  21. Wang, G., Tang, Q., Bao, H., Li, X., and Wang, G., Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance, J. Power Sources, 2013, vol. 241, p. 231.
  22. Zhu, T., He, Z., Zhang, G., Lu, Y., Lin, C., Chen, Y., and Guo, H., Effect of low magnetic fields on the morphology and electrochemical properties of MnO2 films on nickel foams, J. Alloys Compd., 2015, vol. 644, p. 186.