Impact of carbon coating thickness on the electrochemical properties of Li3V2(PO4)3/C composites

Jian Chen Jian Chen , Na Zhao Na Zhao , Fei-Fan Guo Fei-Fan Guo
Российский электрохимический журнал
Abstract / Full Text

A series of Li3V2(PO4)3/C composites with different amounts of carbon are synthesized by a combustion method. The physical and electrochemical properties of the Li3V2(PO4)3/C composites are investigated by X-ray diffraction, element analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The effects of carbon content of Li3V2(PO4)3/C composites on its electrochemical properties are conducted with cyclic voltammetry and electrochemical impedance. The experiment results clearly show that the optimal carbon content is 4.3 wt %, and more or less amount of carbon would be unfavorable to electrochemical properties of the Li3V2(PO4)3/C electrode materials. The results would provide some basis for further improvement on the Li3V2(PO4)3 electrode materials.

Author information
  • Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, P.R. China

    Jian Chen & Na Zhao

  • State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China

    Fei-Fan Guo

  1. Armand, M., Solid State Ionics, 1994, vol. 69, p. 309.
  2. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., J. Electrochem. Soc., 1997, vol. 144, p. 1188.
  3. Cui, Y.T., Xu, N., Kou, L.Q., Wu, M.T., and Chen, L., J. Power Sources, 2014, vol. 249, p. 42.
  4. Wang, J., Li, X., Wang, Z., Guo, H., Zhang, Y., Xiong, X., and He, Z., Electrochim. Acta, 2013, vol. 91, p. 75.
  5. Huang, H., Yin, S.C., Kerr, T., Taylor, N., and Nazar, L.F., Adv. Mater., 2002, vol. 14, p. 1525.
  6. Kuang, Q., Zhao, Y., An, X., Liu, J., Dong, Y., and Chen, L., Electrochim. Acta, 2010, vol. 55, p. 1575.
  7. Qiao, Y.Q., Tu, J.P., Wang, X.L., and Gu, C.D., J. Power Sources, 2012, vol. 199, p. 287.
  8. Pan, A., Liu, J., Zhang, J.G., Xu, W., Cao, G., Nie, Z., Arey, B.W., and Liang, S., Electrochem. Commun., 2010, vol. 12, p. 1674.
  9. Pan, A., Choi, D., Zhang, J.G., Liang, S., Cao, G., Nie, Z., Arey, B.W., and Liu, J., J. Power Sources, 2011, vol. 196, p. 3646.
  10. Zheng, J.C., Li, X.H., Wang, Z.X., Guo, H.J., Hu, Q.Y., and Peng, W.J., J. Power Sources, 2009, vol. 189, p. 476.
  11. Duan, W., Hu, Z., Zhang, K., Cheng, F., Tao, Z., and Chen, J., Nanoscale, 2013, vol. 5, p. 6485.
  12. Qiao, Y.Q., Wang, X.L., Xiang, J.Y., Zhang, D., Liu, W.L., and Tu, J.P., Electrochim. Acta, 2011, vol. 56, p. 2269.
  13. Wei, Q., An, Q., Chen, D., Mai, L., Chen, S., Zhao, Y., Hercule, K.M., Xu, L., Minhas-Khan, A., and Zhang, Q., Nano Lett., 2014, vol. 14, p. 1042.
  14. Wang, W., Zhang, J., Jia, Z., Dai, C., Hu, Y., Zhou, J., and Xiao, Q., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 13858.
  15. Huang, J.S., Yang, L., Liu, K.Y., and Tang, Y.F., J. Power Sources, 2010, vol. 195, p. 5013.
  16. Lu, Y., Wang, L., Song, J., Zhang, D., Xu, M., and Goodenough, J.B., J. Mater. Chem. A, 2013, vol. 1, p. 68.
  17. Dang, J., Xiang, F., Gu, N., Zhang, R., Mukherjee, R., Oh, I.K., Koratkar, N., and Yang, Z., J. Power Sources, 2013, vol. 243, p. 33.
  18. Zhang, L.L., Liang, G., Peng, G., Jiang, Y., Fang, H., Huang, Y.H., Croft, M.C., and Ignatov, A., Electrochim. Acta, 2013, vol. 108, p. 182.
  19. Zhao, J., He, J., Zhou, J., Guo, Y., Wang, T., Wu, S., Ding, X., Huang, R., and Xue, H., J. Phys. Chem. C, 2011, vol. 115, p. 2888.
  20. Doan, T.N.L. and Taniguchi, I., J. Power Sources, 2011, vol. 196, p. 1399.
  21. Yang, J., Kang, X., Hu, L., Gong, X., He, D., Peng, T., and Mu, S., J. Alloys Comp., 2013, vol. 572, p. 158.
  22. Lee, S., Cho, Y., Song, H.K., Lee, K.T., and Cho, J., Angew. Chem. Int. Ed., 2012, vol. 51, p. 8748.
  23. Cao, Q., Zhang, H.P., Wang, G.J., Xia, Q., Wu, Y.P., and Wu, H.Q., Electrochem. Commun., 2007, vol. 9, p. 1228.
  24. Cho, Y.D., Fey, G.T.K., and Kao, H.M., J. Power Sources, 2009, vol. 189, p. 256.
  25. Dominko, R., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Pejovnik, S., and Jamnik, J., J. Electrochem. Soc., 2005, vol. 152, p. A607.
  26. Zhu, G.N., Wang, C.X., and Xia, Y.Y., J. Electrochem. Soc., 2011, vol. 158, p. A102.
  27. Castro, S., Gayoso, M., and Rodriguez, C., J. Solid State Chem., 1997, vol. 134, p. 227.
  28. Chen, J., Zou, Y.-C., Zhang, F., Zhang, Y.-C., Guo, F.-F., and Li, G.-D., J. Alloys Compd., 2013, vol. 563, p. 264.
  29. Chen, J., Zhao, N., Li, G.-D., Guo, F.-F., Zhao, J., Zhao, Y., Jia T., Fu, F., and Li, J., Mater. Res. Bull., 2016, vol. 73, p. 192.
  30. Cho, A.R., Son, J.N., Aravindan, V., Kim, H., Kang, K.S., Yoon, W.S., Kim, W.S., and Lee, Y.S., J. Mater. Chem., 2012, vol. 22, p. 6556.
  31. Chen, J., Zhao, N., Li, G.-D., Jia, T., Shi, D., Zhao, Y., Wang, X., and Guo, F.-F., J. Solid State Electrochem., 2015, vol. 19, p. 1535.
  32. Qian, J., Zhou, M., Cao, Y., Ai, X., and Yang, H., J. Phys. Chem. C, 2010, vol. 114, p. 3477.
  33. Wu, X.L., Jiang, L.Y., Cao, F.F., Guo, Y.G., and Wan, L.J., Adv. Mater., 2009, vol. 21, p. 2710.
  34. Yi, H., Hu, C., Fang, H., Yang, B., Yao, Y., Ma, W., and Dai, Y., Electrochim. Acta, 2011, vol. 56, p. 4052.
  35. Yin, S.C., Grondey, H., Strobel, P., Huang, H., and Nazar, L.F., J. Am. Chem. Soc., 2003, vol. 125, p. 326.
  36. Zhang, L., Xiang, H., Li, Z., and Wang, H., J. Power Sources, 2012, vol. 203, p. 121.