Статья
2000

Contact electroresistance of metals in aqueous solutions during the anion adsorption involving charge transfer


V. A. Marichev V. A. Marichev
Российский электрохимический журнал
https://doi.org/10.1007/BF02827967
Abstract / Full Text

Notions about charge transfer during adsorption of anions on metals in aqueous solutions are rendered. The role played by the electron tunneling on macrocontacts during the signal formation in the method of contact electroresistance (CER) is considered. It is shown that CER depends on the metal surface coverage by adsorbed species and their effective charge. Bell-like CER vs.E curves are obtained for copper, silver, and gold in solutions containing halide ions. Potentials of maximums in the curves,E max, correspond to the charge transfer onset and depend on the nature of the metal and anion and on the anion concentration. AtE belowE max, halides adsorb in the form of ions, involving no substantial charge transfer. At potentials exceedingE max by 0.1 to 0.2 V, practically complete charge transfer occurs. With changing anion nature,E max for a given metal rises in the series I- < Br- ≪ Cl-. For a given anion (say, I-),E max increases with the metal nature in the series Cu ≤Ag ≪ Au. The link between the charge transfer during adsorption of anions and the surface reconstruction in single-crystal electrodes is discussed.

Author information
  • Institute of Physical Chemistry, Russian Academy of Sciences, Leninskiipr. 31, 117915, Moscow, Russia

    V. A. Marichev

References
  1. Frumkin, A.N.,Potentsialy nulevogo zaryada (The Potentials of Zero Charge), Moscow: Nauka, 1979, p. 260.
  2. Damaskin, B.B. and Petrii, O.A.,Vvedenie v elektrokhimicheskuyu kinetiku (Electrochemical Kinetics: An Introduction), Moscow: Vysshaya Shkola, 1975, p. 416.
  3. Schultze, J.W. and Koppitz, F.D.,Electrochim. Acta, 1976, vol. 21, p. 327.
  4. Lorenz, W.,Z. Phys. Chem. (Munich), 1961, vol. 218, p. 272; 1962, vol. 219, p. 421.
  5. Damaskin, B.B.,Elektrokhimiya, 1969, vol. 5, p. 771.
  6. Parsons, R.,Chem. Rev., 1990, vol. 90, p. 813.
  7. Marichev, V.A.,Surf. Sci., 1991, vol. 250, p. 220.
  8. Marichev, V.A.,Electrochim. Acta, 1996, vol. 41, p. 2551.
  9. Marichev, V.A.,Electrochim. Acta, 1998, vol. 43, p. 2203.
  10. Marichev, V.A.,Elektrokhimiya, 1997, vol. 33, pp. 1069, 706.
  11. Marichev, V.A.,Elektrokhimiya, 1999, vol. 35, pp. 456, 466, 474.
  12. Danilov, A.I.,Usp. Khim., 1995, vol. 64, p. 818.
  13. Lee, C.-W. and Bard, A.J.,J. Electrochem. Soc., 1988, vol. 135, p. 1599.
  14. Cruickshank, B.J., Sneddon, D.N., and Gewith, A.A.,Surf. Sci. Lett., 1993, vol. 281, p. 308.
  15. Arvia, A.J.,Surface Sci., 1987, vol. 181, p. 78.
  16. Holm, R. and Holm, E.,Electric Contacts Handbook, 3rd ed., Berlin: Springer, 1958. Translated under the titleElektricheskie kontakty, Moscow: Inostrannaya Literatura, 1961.
  17. Pecina, O., Schmickler, W., Chan, K.Y., and Henderson, D.J.,J. Electroanal. Chem., 1995, vol. 396, p. 303.
  18. Bagotskaya, I.A. and Shlepakov, A.V.,Elektrokhimiya, 1980, vol. 16, p. 565.
  19. Valette, G.,J. Electroanal. Chem., 1982, vol. 139, p. 285.
  20. Brodskii, A.M. and Daikhin, L.I.,Elektrokhimiya, 1989, vol. 25, p. 1573.
  21. Russel, A.E., Lin, A.S., and O’Grady, W.E.,J. Chem. Soc., Faraday Trans. II, 1993, vol. 89, p. 195.
  22. Howard, J.H., Richer, J., Borges, G.J.,et al., Nature (London), 1994, vol. 368, p. 444.
  23. Eisner, C.I., Salvarezza, R.C., and Arvia, A.J.,Electrochim. Acta, 1988, vol. 33, p. 1735.
  24. Hartinger, S., Pettinger, B., and Doblhofer, K.,J. Electroanal. Chem., 1995, vol. 397, p. 335.
  25. Cere, S., de Sanchez, S.R., and Schiffrin, D.J.,J. Electroanal. Chem., 1995, vol. 386, p. 165.
  26. Savinova, E.R., Kraft, P., Pettinger, B., and Doblhofer, K.,J. Electroanal. Chem., 1997, vol. 430, p. 47.
  27. Desilvestro, J. and Weaver, M.J.,J. Electroanal. Chem., 1986, vol. 209, p. 377.
  28. Horanyi, G.,Electrochim. Acta, 1991, vol. 36, p. 1453.
  29. Tsionsky, V., Daikhin, L., and Gileady, E.,J. Electrochem. Soc., 1996, vol. 143, p. 2240.
  30. Gao, X., Edens, G.J., and Weaver, M.J.,J. Electroanal. Chem., 1994, vol. 376, p. 21.
  31. Ocko, B.M., Magnussen Adzic, R.R., Wang, J.X.,et al., J. Electroanal. Chem., 1994, vol. 376, p. 35.
  32. Shi, Z., Wu, S., and Lipkowski, J.,Electrochim. Acta, 1995, vol. 40, p. 9.
  33. Shi, Z. and Lipkowski, J.,J. Electroanal. Chem., 1994, vol. 369, p. 283.
  34. Lei, H.W., Uchida, H., and Watanabe, M.,J. Electroanal. Chem., 1996, vol. 413, p. 131.
  35. Arai, K., Kusu, F., Ohe, K., and Takamura, K.,Electrochim. Acta, 1997, vol. 42, p. 2493.
  36. Ignaczak, A. and Gomes, J.A.,J. Electroanal. Chem., 1997, vol. 420, p. 71.
  37. Calvente, J.J., Kovacova, Z., Andreu, R., and Fawcett, W.R.,J. Electroanal. Chem., 1996, vol. 401, p. 231.
  38. Hupp, J.T., Larkin, D., and Weaver, M.J.,Surf. Sci., 1983, vol. 125, p. 429.
  39. Kautek, W., Gordon II J.G.,J. Electrochem. Soc., 1990, vol. 137, p. 3405.
  40. Hect, D. and Strehblow, H.-H.,J. Electroanal. Chem., 1997, vol. 440, p. 211.
  41. Samorjai, G.A.,Surface Chemistry and Catalysis, New York: Wiley, 1994, p. 57.
  42. Ueno, K. and Seo, M.,J. Electrochem. Soc., 1999, vol. 146, p. 1496.