Electrical and Dielectric Properties of Sb2O3–PbCl2–AgCl Glass System

O. Bosak O. Bosak , M. Kubliha M. Kubliha , P. Kostka P. Kostka , S. Minarik S. Minarik , M. Domankova M. Domankova , D. Le Coq D. Le Coq
Российский электрохимический журнал
Abstract / Full Text

Electrical and dielectric properties of ternary glasses in the Sb2O3–PbCl2–AgCl system were investigated across a broad temperature and frequency range. The studied glass system is interesting since it possesses a high ionic conductivity. The (Sb2O3)x–(PbCl2)100 –y x–(AgCl)y glasses were prepared by melt-quenching method from high purity components. Different batches of these glasses were investigated with varying molar content of both Sb2O3 (45 ≤ x ≤ 70 mol %) and AgCl (5 ≤ y ≤ 25 mol %). The colour of the prepared chloro-antimonite glasses varies between yellow and brown. The glass transition temperature (Tg) decreases with increasing AgCl concentrations. DC and AC electrical conductivities and complex electrical modulus were measured across a temperature range from room temperature up to 200°C and across a frequency range between 0.2 and 105 Hz. The dependence of DC conductivity on temperature follows the so-called Arrhenius-like equation. The DC conductivity at constant temperature significantly increases with increasing AgCl or PbCl2 content. It was found that the activation energy of conduction process decreases with the substitution of PbCl2 by AgCl from 1 eV down to 0.56 eV for (Sb2O3)50-(PbCl2)45–(AgCl)5 and (Sb2O3)50–(PbCl2)25–(AgCl)25, respectively. The influence of the composition on the AC conductivity of the investigated glasses is also discussed.

Author information
  • Faculty of Materials Science and Technology, Slovak University of Technology, 91724, Trnava, Slovakia

    O. Bošák, M. Kubliha, S. Minarik & M. Domankova

  • Laboratory of Inorganic Materials, Institute of Rock Structure and Mechanics of the Czech Academy of Sciences, V Holešovičkách, 18209, Prague, Czech Republic

    P. Kostka

  • Laboratory of Inorganic Materials, University of Chemistry and Technology Prague Technická, 16628, Prague 6, Czech Republic

    P. Kostka

  • Université de Rennes, CNRS – ISCR UMR 6226, F-35000, Rennes, France

    D. Le Coq

  1. Dubois, B., Aomi, H., Videau, J.J., Portier, J., and Hagenmuller, P., New oxyhalide glasses involving Sb2O3, Mat. Res. Bull., 1984, vol. 19, no. 10, p. 1317.
  2. Zavadil, J., Ivanova, Z.G., Kostka, P., Hamzaoui, M., and Soltani, M.T., Photoluminescence study of Er-doped zinc-sodium-antimonite glasses, J. Alloy. Compd., 2014, vol. 611, p. 111.
  3. Soltani, M.T., Hamzaoui, M., Houhou, S., Touiri, H., Bediar, L., Ghemri, A.M., and Petkova, P., Physical characterization of Sb2O3–M2O–MoO3 (M = Li, K) new glasses, Acta Phys. Pol. A, 2013, vol. 123, p. 227.
  4. Hamzaoui, M., Azri, S., Soltani, M.T., Lebullenger, R., and Poulain, M., Thermal and elastic characterization of Sb2O3–Na2O–ZnO glasses, Phys. Scr., 2013, vol. 157, p. 014029. https://doi.org/10.1088/0031-8949/2013/T157/014029
  5. Minelly, J. and Ellison, A., Applications of antimony-silicate glasses for fiber optic amplifiers, Opt. Fiber Technol., 2002, vol. 8, p. 123.
  6. Dubois, B., Videau, J.J., Couzi, M., and Portier, J., Structural approach of the (xPbCl2-(1-x)Sb2O3) glass system, J. Non-Cryst. Solids, 1986, vol. 88, p. 355.
  7. Bošák, O., Kostka, P., Minárik, S., Trnovcová, V., Podolinčiaková, J., and Zavadil, J., Influence of composition and preparation conditions on some physical properties of TeO2–Sb2O3–PbCl2 glasses, J. Non-Cryst. Solids, 2013, vol. 377, p. 74.
  8. Goumeidane, F., Legouera, M., Iezid, M., Poulain, M., Nazabal, V., and Lebullenger, R., Synthesis and physical properties of glasses in the Sb2O3–PbCl2–MoO3 system, J. Non-Cryst. Solids, 2011, vol. 357, p. 3572.
  9. Labaš, V., Poulain, M., Kubliha, M., Trnovcová, V., and Goumeidane, F., Electrical, dielectric and optical properties of Sb2O3–PbCl2–MoO3 glasses, J. Non-Cryst. Solids, 2013, vol. 377, p. 66.
  10. Macháček, J., Kostka, P., Liška, M., Zavadil, J., and Gedeon, O., Calculation and analysis of vibrational spectra of PbCl2–Sb2O3–TeO2 glass from first principles, J. Non-Cryst. Solids, 2011, vol. 357, p. 2562.
  11. Gedikoglu, N., Ersundu, M.C., Kostka, P., Basinova, N., and Ersundu, A.E., Investigating the influence of transition metal oxides on temperature dependent optical properties of PbCl2–TeO2 glasses for their evaluation as transparent large band gap semiconductors, J. Alloys Compd., 2018, vol. 748, p. 687.
  12. Poirier, G., Poulain, M., and Poulain, M., Copper and lead halogeno-antimoniate glasses, J. Non-Cryst. Solids, 2001, vol. 284, p. 117.
  13. Cozic, S., Bréhault, A., Usuki, T., and Le Coq, D., GeS2–Ga2S3–LiCl glass system: electrical conductivity and structural considerations, Int. J. Appl. Glass Sci., 2016, vol. 7, no. 4, p. 513.
  14. Castro, A., Bréhault, A., Carcreff, J., Bošák, O., Kubliha, M., Trnovcová, V., Dománková, M., Šiljegović, M., Calvez, L., Labaš, V., and Le Coq, D., Lithium and lead chloride antimonate glasses, J. Non-Cryst. Solids, 2018, vol. 499, p. 66.
  15. Sahar, M.R., Ahmed, M.M., and Holland, D., The crystallisation of Sb2O3–PbCl2–ZnCl2 glasses, Phys. Chem. Glasses, 1990, vol. 31, no. 3, p. 126.
  16. Yezli, D., Legouera, M., El Abdi, R., Poulain, M., and Burgaud, V., Mechanical, thermal, and optical properties of new chloroantimonite glasses in the Sb2O3–PbCl2–AgCl system, Mat. Sci., 2016, vol. 52, no. 1, p. 33.
  17. Kubliha, M., Investigating Structural Changes and Defects of Non-Metallic Materials via Electrical Methods, 1 st ed., Dresden: Forschungszentrum Dresden-Rossendorf, 2009.
  18. Kalužný, J., Kubliha, M., Labaš, V., Poulain, M., and Taibi, Y., Electrical and dielectrical properties of Sb2O3–V2O5–K2O glasses, J. Non-Cryst. Solids, 2009, vol. 355, nos. 37–42, p. 2031.
  19. Kubliha, M., Soltani, M.T., Trnovcová, V., Legouera, M., Labaš, V., Kostka, P., Le Coq, D., and Hamzaoui, M., Electrical, dielectric, and optical properties of Sb2O3–Li2O–MoO3 glasses, J. Non-Cryst. Solids, 2015, vol. 428, p. 42.
  20. Moynihan, C.T., Boesch, L.P., and Laberge, N.L. Decay function for electric-field relaxation in-vitreous ionic conductors, Phys. Chem. Glasses, 1973, vol. 14, p. 122.
  21. Molak, A., Paluch, M., Pawlus, S., Klimontko, J., Ujma, Z., and Gruszka, I., Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics, J. Phys. D: Appl. Phys., 2005, vol. 38, p. 1450.
  22. Davidson, D.W. and Cole, R.H., Dielectric relaxation in glycerine, J. Chem. Phys., 1950, vol. 18, p. 1417.
  23. Ashok, J., Kostrzewa, M., Ingram, A., Venkatramaiah, N., Srinivasa Reddy, M., Ravi Kumar, V., Piasecki, M., and Veeraiah, N., Structural and dielectric features of silver doped sodium antimonate glass ceramics, J. Alloy. Compd., 2019, vol. 791, p. 278.