Examples



mdbootstrap.com



 
Статья
2021

Electrochemical Synthesis of Intermetallic and Refractory Compounds Based on Rare-Earth Metals in Ionic Melts: Achievements and Prospects


Kh. B. KushkhovKh. B. Kushkhov, M. R. TlenkopachevM. R. Tlenkopachev
Российский журнал общей химии
https://doi.org/10.1134/S1070363221020146
Abstract / Full Text

The review is devoted to the electrochemical synthesis of intermetallic and refractory compounds of rare-earth metals with the iron triad metals, boron, and silicon in ionic melts. The results of studies of the electrochemical behavior of chloride complexes of lanthanides, iron, cobalt, and nickel as well as fluoroborate and fluorosilicate ions in chloride and chloride-fluoride melts are presented. The features of the processes of simultaneous electroreduction of rare-earth metal ions with metal ions of the iron triad, fluoroborate and fluorosilicate ions are considered. The optimal parameters of electrosynthesis of binary and ternary compounds based on rare-earth metals are given. The prospects for the development of high-temperature electrochemistry of rare-earth metals and technological solutions in the field of electrosynthesis of rare-earth metal compounds in molten salt media are outlined.

Author information
  • H.M. Berbekov Kabardino-Balkarian State University, 360004, Nalchik, RussiaKh. B. Kushkhov & M. R. Tlenkopachev
References
  1. Oboronno-promyshlennyi kompleks Rossii: Federal’nyi spravochnik (Defense-Industrial Complex of Russia: Federal: Reference book), Kiselev, T.V., Ed., 2014, vol. 10, p. 127.
  2. Kudrevatykh, N.V. and Volegov, A.S., Magnetizm redkozemel’nykh metallov i ikh intermetallicheskikh soedinenii (Magnetism of Rare Earth Metals and Their Intermetallic Compounds), Yekaterinburg: Ural. Univ., 2015.
  3. Samsonov, G.V., Tugoplavkie soedineniya redkozemel’nykh metallov s nemetallami (Refractory Compounds of Rare Earth Metals with Non-Metals), Moscow: Metallurgiya, 1964.
  4. Itin, V.I. and Naiborodenko, Yu.S., Vysokotemperaturnyi sintez intermetallicheskikh soedinenii (High-Temperature Synthesis of Intermetallic Compounds), Tomsk: Tomsk. univ., 1989.
  5. Vandarkuzhali, S., Chandra, M., Ghosh, S., Samanta, N., Nedumaran, S., Reddy, P.B., and Nagarajan, K., Electrochim. Acta, 2014, vol. 145, p. 86. https://doi.org/10.1016/j.electacta.2014.08.069
  6. Caravaca, С., Tomas, M.J., and Rosado, M., J. Nucl. Mater., 2007, vol. 360, p. 25. https://doi.org/10.1016/j.jnucmat.2006.08.009
  7. Castrillejo, Y., Bermejo, M.R., Martinez, A.M., Barrado, E., and Diaz, P., J. Nucl. Mater., 2007, vol. 360, p. 32. https://doi.org/10.1016/j.jnucmat.2006.08.011
  8. Matsumiya, M., Matsumoto, Y.Sh., Miyakonojo, M., Z. Naturforsch., 2004, vol. 59, p. 711. https://doi.org/10.1515/zna-2004-1015
  9. Gao, F., Wang, Ch., Liu, L., Guo, J., Chang, Sh., Chang, L., Li, R., and Ouyangn, Y., J. Rare Earths, 2009, vol. 27, no. 6, p. 986. https://doi.org/10.1016/S1002-0721(08)60375-0
  10. Fabian, C.P., Luca, V., Chamelot, P., Massot, L., and Caravaca, C., J. Electrochem. Soc., 2012, vol. 159, no. 4, p. 63. https://doi.org/10.1149/2.057204jes
  11. Masset P, Konings R.M, Malmbeck, R., Serp, J., and Glatz, J.P., J. Nucl. Mater., 2005, vol. 344, no. 13, p. 173. https://doi.org/10.1016/j.jnucmat.2005.04.038
  12. Li, M., Gu, Q.Q., Han, W., Zhang, X.M., Sun, Y., Zhang, M.L., and Yan, Y.D., RSC Adv., 2015, vol. 5, no. 100, p. 82471. https://doi.org/10.1039/C5RA12723H
  13. Tang, H. and Pesic, B., Electrochim Acta, 2014, vol. 119, p. 120. https://doi.org/10.1016/j.electacta.2013.11.148
  14. Castrillejo, Y., Bermejo, M.R., Arocas, D., Martinez, A.M., and Barrado, E., Progress in Molten Salt Chemistry, 2000, vol. 1, p. 143.
  15. Wang, C., Huhi, Y., and Gao, F., J. Rare Earths, 2013, vol. 31, no. 4, p. 405. https://doi.org/10.1016/S1002-0721(12)60295-6
  16. Sahoo, D.K., Satpati, A.K., and Krishnamurthy, N., RSC Adv., 2015, vol. 5, no. 42, p. 33163. https://doi.org/10.1039/c4ra15334k
  17. Li, M., Li, W., Han, W., and Zhang, M., Chem. J. Chin. Univ., 2014, vol. 35, no. 12, p. 2662.
  18. Tang, H., Yan, Y.D., Ren, Q., AND Zhang, M.L., J. Rare Earths, 2016, vol. 34, no. 4, p. 428. https://doi.org/10.1016/S1002-0721(16)60044-3
  19. Wu, I., Proc. 25th Symposium on Molten Salt Chemistry, 1993, p. 117.
  20. Yamamura, T., Мhmood, M., Maekawa, H., and Sato, Y., Chem. Sustain. Develop., 2004, vol. 12, no. 1, p. 105.
  21. Castrillejo, Y., Fernandez, P., Мdina, J., Hernandez, P., and Barrado, E., Electrochim. Acta, 2011, vol. 56, no. 24, p. 8638. https://doi.org/10.1016/j.electacta.2011.07.059
  22. Masatoshi, I., J. Electrochem. Soc., 1998, vol. 145, no. 1, p. 84.
  23. Lantelme, F., J. Electrochem. Soc., 1999, vol. 146, no. 11, p. 4137.
  24. Bermejo, M.R., Gomez, J., Мdina, J., Martinez, A.M., and Castrillejo, Y., J. Electroanal. Chem., 2006, vol. 588, no. 2, p. 253. https://doi.org/10.1016/j.jelechem.2005.12.031
  25. Castrillejo, Y., Bermejo, M.R., and Barrado, A.I., Electrochim. Acta, 2005, vol. 50, no. 10, p. 2047. https://doi.org/10.1016/j.electacta.2004.09.013
  26. Konishi, H., Nohira, T., and Ito, Y., Electrochim. Acta, 2002, vol. 47, no. 21, p. 3533. https://doi.org/10.1016/S0013-4686(02)00323-7
  27. Konishi, H., Nishikiori, T., and Nohira, T., Electrochim. Acta, 2003, vol. 48, no. 10, p. 1403. https://doi.org/10.1016/S0013-4686(03)00007-0
  28. Konishi, H., Nohira, T., and Ito, Y., Electrochim. Acta, 2003, vol. 48, p. 563. https://doi.org/10.1016/S0013-4686(02)00723-5
  29. De Cordoba, G. and Caravaca, C., J. Electroanal. Chem., 2004, vol. 572, no. 1, p. 145. https://doi.org/10.1016/j.jelechem.2004.05.029
  30. Vandarkuzhali, S., Gogoi, N., Ghosh, S., and Prabhakara, B.R., Nagarajan, K., Electrochim. Acta, 2012, vol. 59, no. 1, p. 245. https://doi.org/10.1016/j.electacta.2011.10.062
  31. Kim, B.K. and Park, B.G., Electrochim. Acta, 2019, vol. 295, p. 270. https://doi.org/10.1016/j.electacta.2018.10.158
  32. Castrillejo, Y., Bermejo, M.R., Pardo, R., and Martı́nez, A.M., J. Electroanal. Chem., 2002, vol. 522, no. 2, p. 124. https://doi.org/10.1016/S0022-0728(02)00717-9
  33. Castrillejo, Y., Bermejo, M.R., and Díaz, P., J. Electroanal. Chem., 2005, vol. 575, no. 1, p. 61. https://doi.org/10.1016/j.jelechem.2004.08.020
  34. Castrillejo, Y., Bermejo, M.R., and Díaz, P., J. Electroanal. Chem., 2005, vol. 579, no. 2, p. 343. https://doi.org/10.1016/j.jelechem.2005.03.001
  35. Kuznetsov, S.A. and Gaune-Escard, M., Proc. VII Int. Symp. Molten Salts Technol., Toulouse, 2005, vol. 2, p. 855.
  36. Glagolevskaya, A.L., Kuznetsov, S.A., Polyakov, E.G., and Stangrit, P.T., Zh. Prikl. Khim., 1987, vol. 60, no. 4, p. 770.
  37. Zhukovin, S.V., Bushuev, A.N., and Chernova, O.V., Dep. VINITI, 2010, no. 575-V2010.
  38. Nikolaeva, E.V., Bovet, A.L., and Khokhlov, V.A., Abstr. Joint Symposium on Molten Salts, Kobe, 2008, p. 243.
  39. Kushkhov, Kh.B, Kalibatova, M.N., Vindizheva, M.K., and Mukozheva, R.A., Rasplavy, 2017, no. 2, p. 142.
  40. Yexiang, T., Guankun, L., and Qiqin, Y., J. Rare Earths, 1996, vol. 14, no. 4, p. 275.
  41. Zhukovin, S.V., Chernova, O.V., and Kondrat’ev, D.A., Mezhd. Nauch. Zh “Simvol Nauki”, 2016, no. 4, p. 30.
  42. Kushkhov, K.B., Vindizheva, M.K., and Karashaeva, R.A., Russ. J. Electrochem., 2006, vol. 42, no. 8, p. 830. https://doi.org/10.1134/S1023193506080040
  43. Kushkhov, Kh.B., Zhanikaeva, Z.A., and Chuksin, S.I., Rasplavy, 2013, no. 3, p. 87.
  44. Kushkhov, Kh.B., Uzdenova, A.S., Zhanikaeva, Z.A., Chuksin, S.I., and Shumilov, K.A., Abstr. Joint Symposium on Molten Salts, Kobe, 2008, p. 115.
  45. Kushkhov, Kh.B., Zhanikaeva, Z.A., and Chuksin, S.I., Rasplavy, 2009, no. 3, p. 50.
  46. Kushkhov, H., Zhanikaeva, Z., and Chuksin, S., Abstr. Conference on Molten Salts and Ionic Liquids EUCHEM 2006, Hammamet, 2006, p. 263.
  47. Kushkhov, Kh.B., Abazova, A.Kh., Mukozheva, R.A., and Vindizheva, M.K., Rasplavy, 2017, no. 2, p. 153.
  48. Kushkhov, Kh.B., Uzdenova, A.S., Salekh, M.M.A., and Uzdenova, L.A., Rasplavy, 2014, no. 1, p. 85.
  49. Kushkhov, Kh.B., Uzdenova, A.S., Saleh, M.M.A., Qahtan, A.M.F., and Uzdenova, L.A., Am. J. Anal. Chem., 2013, no. 4, p. 39. https://doi.org/10.4236/ajac.2013.46A006
  50. Kushkhov, Kh.B., Uzdenova, A.S., Kakhtan, A.M.F., and Uzdenova, L.A., Rasplavy, 2013, no. 5, p. 25.
  51. Jia, Y.-H., He, H., Lin, R.-H., Tang, H.-B., and Wang, Y.-Q., J. Radioanal. Nucl. Chem., 2015, vol. 303, p. 1763.
  52. Shkol’nikov, N., Tolypin, E., and Zatyatskii, B., Zh. Prikl. Khim., 1982, no. 2, p. 319.
  53. Nikolaeva, Е.V., Rasplavy, 2007, no. 6, p. 49.
  54. Kushkhov, Kh.B., Vindizheva, M.K., Mukozheva, R.A., Tlenkopachev, M.R., and Kalibatova, M.N., Rasplavy, 2012, no. 1, p. 50.
  55. Kushkhov, K.B., Vindizheva, M.K., Karashaeva, R.A., and Tlenkopachev, M.R., Russ. J. Electrochem., 2010, vol. 46, no. 6, p. 691. https://doi.org/10.1134/S1023193510060145
  56. Kushkhov, Kh.B., Salekh, M.M.A., Uzdenova, A.S., Tlenkopachev, M.R., and Uzdenova, L.A., Rasplavy, 2014, no. 3, p. 43.
  57. Kushkhov, Kh.B., Kakhtan, A.M., Uzdenova, A.S., Tlenkopachev, M.R., and Uzdenova, L.A., Rasplavy, 2014, no. 4, p. 60.
  58. Kushkhov, Kh.B., Uzdenova, A.S., Kakhtan, A.M., and Uzdenova, L.A., Dokl. Adygskoi (Cherkesskoi) Mezhd. Akad. Nauk, 2012, vol. 14, no. 2, p. 88.
  59. Kakhtan, A.M., Kushkhov, Kh.B., Tlenkopachev, M.R., Ligidova, M.N., Shogenova, D.L., Mukozhev, R.A., and Vindizheva, M.K., Izv. KBGU, 2018, vol. 8, no. 1, p. 57.
  60. Castrillejo, Y., Bermejo, M.R., Barrado, E., Martınez, A.M., and Daz Arocas, P., J. Electroanal. Chem., 2003, vol. 545, p. 141. https://doi.org/10.1016/S0022-0728(03)00092-5
  61. Casttrillejo, Y., Bermejo, M., Martinez, A., and Diaz, P., J. Min. Metal., 2003, vol. 39, nos. 1–2, p. 109.
  62. Nikolaeva, E.V., Bove, A.L., and Moskalenko, N.I., Rasplavy, 2008, vol. 6, p. 64.
  63. Volkovich, V.A., Ivanov, A.B., Sobolev, A.A., Vasin, B.D., and Griffiths, T.R., ECS Trans., 2014, vol. 64, no. 4, p. 617. https://doi.org/10.1149/06404.0617ecst
  64. Shapoval, V.I., Zarutskii, I.V., Malyshev, V.V., and Uskova, N.N., Russ. Chem. Rev., 1999, vol. 68, p. 925. https://doi.org/10.1070/RC1999v068n11ABEH000470
  65. Lantelme, F., J. Electrochem. Soc., 2001, vol. 148, no. 9, p. 604. https://doi.org/10.1149/1.1385819
  66. Shuqiang, Jiao and Hongmin, Zhu, J. Hazard. Mater., 2011, vol. 189(3), p. 821. https://doi.org/10.1016/j.jhazmat.2011.03.027
  67. Volkov, S.V., Grishchenko, V.F., and Delimarskii, Yu.K., Koordinatsionnaya khimiya solevykh rasplavov (Coordination Chemistry of Salt Melts), Kiev: Naukova Dumka, 1977, p. 332.
  68. Sytchev, J. and Kushkhov, H., Int. Computer Sci. Conf. Miskolc., 2000, p. 69.
  69. Kushkhov, Kh.B., Supatashvili, D.G., Shapoval, V.I., Novoselova, I.A., and Gasviani, N.A., Elektrokhim., 1990, vol. 26, no. 3, p. 300.
  70. Kuznetsov, S.A., Russ. J. Electrochem., 1996, vol. 32, no. 7, p. 763.
  71. Brookes, H.C., Gibson, P.S., Hills, G.J., Narayan, N., and Wigley, A., Trans. Inst. Metal Finishing., 1976, no. 54, p. 191.
  72. Makyta, M., Matiasovsky, K., and Fellner, P., Electrochim. Acta, 1984, vol. 29, no. 12, p. 1653. https://doi.org/10.1016/0013-4686(84)89006-4
  73. Miller, G.T., J. Electrochem., 1959, vol. 815, p. 106.
  74. Taranenko, V.I., Zarutskii, I., and Shapoval, V.I., Electrochim. Acta, 1992, vol. 37, no. 2, p. 263. https://doi.org/10.1016/0013-4686(92)85011-9
  75. Kellner, J.D., J. Electrochem. Soc., 1973, vol. 120(6), p. 713.
  76. Nair, K.U., Bose, D.K., and Gupta, C.K., Process. Extr. Metal. Rev., 1992, vol. 9, p. 283.
  77. Newkirk, A.E., Boron, Metallo-Boron Compounds and Boranes, New York: Interscience Publishers, 1964, p. 301.
  78. Takakharo,, H., Kadzutaka,, K., Genchita, Yu., and Masauzi O., Japan Patent 4236243, 1966.
  79. Egami, I., Akasi, K., Hang, I.C., and Ogura, H., 16th Мeeting of the Electrochemical Society of Japan, 1965, p. 102.
  80. Danek, V., Votava, L., Chenkova-Paneirova, M., and Matisovsky, B., Chem. Zvesti, 1976, vol. 30, p. 841.
  81. Shapoval, V.I., Solov’ev, V.V., and Malyshev, V.V., Russ. Chem. Rev., 2001, vol. 70, no. 2, p. 161. https://doi.org/10.1070/RC2001v070n02ABEH000619
  82. Brookes, H.S., Cibson, P.S., Hills, G.T., Naraian, N., and Wigley, D.A., Trans. Inst. Metal Finishing, 1976, vol. 54, no. 4. P., 191.
  83. Polyakova, L.P., Bukatova, G.A., and Polyakov, E.G., J. Electrochem. Soc., 1996, vol. 143 (10), p. 3178. https://doi.org/10.1149/1.1837184
  84. Chemezov, O.V., Candidate Sci. (Chem.) Dissertation, Sverdlovsk, 1987.
  85. Wartenberg, H.V., Zeit. ganisch. allg. Chem., 1951, vol. 265, p. 186.
  86. Stern, D.R. and, McKenna, Q.H., US Patent 2892763, 1959.
  87. Delimarskii, Yu.K., Golov, A.G., Nizov, A.P., and Chernov, R.V., Ukr. Khim. Zh., 1968, vol. 34, no. 12, p. 1227.
  88. Lyakhovich, E.N., Voroshrim, L.G., and Shcherbakov, E.D., J. Мetal. Sci. Heat Treat., 1971, vol. 13, no. 8, p. 647. https://doi.org/10.1007/BF00651782
  89. Delimarskii, Yu.K., Storchak, N.N., and Chernov, R.V., Elektrokhim., 1973, vol. 9, no. 10, p. 1443.
  90. Devyatkin, S.V., J. Min. Metal., 2003, vol. 39, nos. 1–2, p. 303.
  91. Zhuk, S.I., Minchenko, L.M., Chemezov, O.V., Malkov, V.B., Isakov, A.V., and Zaikov, Yu.P., Chimica Techno Acta, 2014, vol. 1, no. 2, p. 67. https://doi.org/10.15826/chimtech.2014.1.2.1047
  92. Kuznetsova, S.V., Dolmatov, V.S., and Kuznetsov, S.A., Russ. J. Electrochem., 2009, vol. 45, no. 7, p. 742. https://doi.org/10.1134/S1023193509070052
  93. Isakov, A.V., Chemezov, O.V., Apisarov, A.P., Porotnikova, N.M., and Zaikov, Yu.P., Vopr. Khim. Khim. Tekhnol., 2011, no. 4(1), p. 214.
  94. Boiko, O.I., Delimarskii, Yu.K., and Chernov, R.V., Ukr. Khim. Zh., 1985, vol. 51(4), p. 385.
  95. De Lepinay, Bouteillon, J., Traore, S., Renaud, D., and Barbier, M.J., J. Appl. Electrochem., 1987, vol. 17, no. 2, p. 294. https://doi.org/10.1007/BF01023295
  96. Sharma, I.G. and Mukherjee, T.K., Мetal Mater. Trans. B, 1986, vol. 17, p. 395. https://doi.org/10.1007/BF02655087
  97. Kuznetsov, S.A., Molten Salts: From Fundamentals to Applications, Gaune-Escard, M., Ed., Norwell: Kluwer Acad. Publ., 2002, p. 283.
  98. Dolmatov, V. and Kuznetsov, S., Мet. Abstr. Electrochem. Soc., 2012, no. 53, p. 3665. https://doi.org/10.1149/MA2012-02/53/3665
  99. Frolenko, D.B., Martem’yanova, Z.S., Baraboshkin, A.N., and Plaksin, S.V., Rasplavy, 1993, no. 5, p. 42.
  100. Frolenko, D.B., Martem’yanova, Z.S., Valeev, Z.I., and Baraboshkin, A.N., Elektrokhim., 1992, vol. 28, no. 12, p. 1737.
  101. Yang, H., Zhang, Y., Li, Y., Tang, G., and Jia, K., Proc. Defects and Diffusion Ceramics XI. Switzerland, 2009, p. 33.
  102. Chemezov, O.V., Vinogradov-Zhabrov, O.N., Apisarov, A.P., Isakov, A.V., Povolotskii, I.M., Murzakaev, A.M., Malkov, V.B., and Zajkov, Yu.P., Perspektiv. Material., 2010, no. 9, p. 277.
  103. Chemezov O.V, Vinogradov-Jabrov, O.N., Apisarov, A.P., Isakov, A.V., Plaxin, S.V., Malkov, V.B., Zaikov, Yu.P., Proc. Silicon for the Chemical and Solar Industry X, 2010, no. 7491, p. 71.
  104. Chemezov, O.V., Vinogradov-Zhabrov, O.N., Apisarov, A.P., Isakov, A.V., Povolotskii, I.M., Murzakaev, A.M., Malkov, V.B., and Zaikov, Yu.P., Abstract of Papers, All-Russian Conf. “Functional Nanomaterials and High-Purity Aubstances”, Moscow, 2009, p. 27.
  105. Chemezov, O.V., Isakov, A.V., Apisarov, A.P., Vinogradov-Zhabrov, O.N., Malkov, V.B., Moskalenko, N.I., Plaksin, S.V., and Zaikov, Yu.P., Abstract of Papers, XV Ross. Conf. on Physical Chemistry and Electrochemistry Spread and Solid Electrolytes, Nal’chik, 2010, p. 81.
  106. Cai, Z., Li, Y., He, X., and Liang, J., Мetal Mater. Trans., 2010, vol. 41, no. 5, p. 1033. https://doi.org/10.1007/s11663-010-9393-1
  107. Zhuk, S.I., Minchenko, L.M., Chemezov, O.V., and Zaikov, Yu.P., Vestn. TGU, 2013, vol. 18, no. 5, p. 2201.
  108. Bieber, A.L., Massot, L., Cibilaro, M., Gasseyre, L., Taxil, P., and Chamellot, P., Electrochim. Acta, 2012, vol. 62, p. 282. https://doi.org/10.1016/j.electacta.2011.12.039
  109. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (State Diagrams of Binary Metal Systems), Moscow: Mashinostroenie, 1996.
  110. Vindizheva, M.K., Mukozheva, R.A., Tlenkopachev, M.R., and Kushkhov, Kh.B., Perspektiv. Material., 2010, no. 9, p. 255.
  111. Kushkhov, Kh.B., Mukozheva, R.A., Vindizheva, M.K., Abazova, A.Kh., Kalibatova, M.N., and Bala, B.V., Abstract of Papers, XV Ross. Conf. on Physical Chemistry and Electrochemistry Spread and Solid Electrolytes, Yekaterinburg, 2013, p. 172.
  112. Kushkhov, Kh.B., Vindizheva, M.K., Mukozheva, R.A., Tlenkopachev, M.R., and Kyarova, A.Kh., Abstract of Papers, XV Ross. Conf. on Physical Chemistry and Electrochemistry Spread and Solid Electrolytes, Nal’chik, 2010, vol. 2, p. 179.
  113. Shapoval, V.I., Malyshev, V.V., Novoselova, I.A., and Kushkhov, Kh.B., Usp. Khim., 1995, vol. 64, no. 2, p. 133.
  114. Kushkhov, Kh.B., Chuksin, S.I., Zhanikaeva, Z.A., and Baryshnikova, Kh.A., Abstract of Papers, XV Ross. Conf. on Physical Chemistry and Electrochemistry Spread and Solid Electrolytes, Nal’chik, 2010, p. 182.
  115. Kushkhov, Н.B., Vindigeva, M.K., Karashaeva, R.A., Tlenkopachev, M.R., and Nafonova, M.N., Joint Symposium on Molten Salts, Kobe, 2008, p. 282.
  116. Kushkhov, Kh.B., Uzdenova, A.S., Kakhtan, A.M.F., Salekh, M.M.A., and Uzdenova, L.A., Abstract of Papers, XV Ross. Conf. on Physical Chemistry and Electrochemistry Spread and Solid Electrolytes, Yekaterinburg, 2013, vol. 1, p. 179.
  117. Kushkhov, H.B., Karashaeva R.A, Tlenkopachev, M.R., Vindizheva, M.K., and Kyarova, A.H., Joint Symposium on Molten Salts, Kobe, 2008, p. 528.
  118. Kushkhov, Kh.B., Vindizheva, M.K., Mukozheva, R.A., Abazova, A.Kh., and Kyarova, Z.Kh., Izv. KBGU, 2016, vol. 4, no. 1, p. 52.
  119. Kushkhov, Kh.B., Uzdenova, A.S., Saleh, M.M.A., and Uzdenova, L.A., SOP Trans. Phys. Chem., 2014, vol. 1, no. 1, p. 23.
  120. Kushkhov, Kh.B., Abazova, A.Kh., Vindizheva, M.K., and Mukozheva, R.A., Rasplavy, 2014, no. 5, p. 54.
  121. Kushkhov, Kh.B., Vindizheva, M.K., Mukozheva, R.A., Kalibatova, M.N., Abazova, A.Kh., and Kyarova, Z.Kh., Tr. Kol’sk. NS RAN, 2015, no. 1, p. 247.
  122. Kakhtan, A.M., Salekh, M.M., Kushkhov, Kh.B., Tlenkopachev, M.R., Ligidova, M.N., and Zhanikaeva, Z.A., Izv. KBGU, 2018, vol. 8, no. 1, p. 67.
  123. Kushkhov, Kh.B., Abazova, A.Kh., Vindizheva, M.K., Mukozheva, R.A., Kyarov, A.A., and Kyarova, Z.Kh., Izv. KBGU, 2016, vol. 4, no. 1, p. 60.
  124. Chuksin, S.I., Candidate Sci. (Chem.) Dissertation, Yekaterinburg, 2013..
  125. Kovalevskii, A.V. and Kondrat’ev, D.A., Izv. Vuzov, Poroshkov. Metallurg. Funkts. Pokrytiya, 2016, no. 3, p. 51. https://doi.org/10.17073/1997-308X-2016-3-51-57
  126. Kovalevskii, A.V., Ilyushhenko, N.G., Varkin, V.N., and Sorokina, V.V., Izv. Vuzov, Tsvet. Metallurg., 1988, no. 5, p. 20.
  127. Edwar, M., New Front. Rare Earth Sci. And Appl. Proc. Int. Conf. Bejing, 1985, vol. 2, p. 1099.
  128. Guankun, L., Yexiang, T., and Huichan, H., J. Rare Earths, 1997, vol. 15, no. 4, p. 271.
  129. Konishi, H., Nohira, T., and Ito, Y., Electrochim. Acta, 2003, vol. 48, no. 5, p. 563. https://doi.org/10.1016/S0013-4686(02)00723-5
  130. Konishi, H., Usui, T., and Nohira, T., J. Phys. Conf. Ser., 2009, vol. 165, p. 4.
  131. Yasuda, K., Kobayashi, S., and Nohira, T., Electrochim. Acta, 2013, vol. 106, p. 293. https://doi.org/10.1016/j.electacta.2013.05.095
  132. Zhu D.R, Yang, Q., and Qiu, K., J. Electroplating & Finishing, 1994, vol. 13, no. 4, p. 1.
  133. Liu, L., Tong, Y., and Yang, Q., Rare Мetals, 2000, vol. 19, p. 237.
  134. Guo, C.-Y., Wang, J.-C., Chen, B.-Q,. and Wang, J.-G., Nonferrous Мetal Soc., 2005, vol. 15, no. 5, p. 1190.
  135. Iida, T., Nohira, T., and Ito, Y., Electrochim. Acta, 2003, vol. 48, no. 17, p. 2517. https://doi.org/10.1016/S0013-4686(03)00293-7
  136. Iida, T., Nohira, T., and Ito, Y., Electrochim. Acta, 2003, vol. 48, no. 7, p. 901. https://doi.org/10.1016/S0013-4686(02)00786-7
  137. Takeda, O., Ideno, T., Hoshi, M., and Sato, Y., Мet. Abstr. Electrochem. Soc., 2008, no. 49, p. 3057. https://doi.org/10.1149/MA2008-02/49/3057
  138. Kushkhov, Kh.B., Mukozheva, R.A., Vindizheva, M.K., Uzdenova, A.S., Tlenkopachev, M.R., and Abazova, A.Kh., RF Patent 2466090, 2012.
  139. Kushkhov, Kh.B., Mukozheva, R.A., Vindizheva, M.K., and Abazova, A.Kh., RF Patent 2540277, 2015.
  140. Kovalevskii, V.А., Abstract of Papers, XV Ross. Conf. on Physical Chemistry and Electrochemistry Spread and Solid Electrolytes, Sverdlovsk, 1987, vol. 1, p. 77.
  141. Lebedev, V.A., Efremov, V.V., and Kober, V.I., Splavy redkikh metallov s osobymi fiziko-khimicheskimi svoistvami (Melts of Rare Metals with Special Physical and Chemical Properties), Moscow: Nauka, 1975, p. 96.
  142. Yamamura, T., Мhmood, M., Maekawa, H., and Sato, Y., Chem. Sustainable Dev., 2004, vol. 12, p. 105.
  143. Tolstobrovov, I.V., El’kin, O.V., Bushuev, A.N., and Kondrat’ev, D.A., RF Patent 2615668, 2017.
  144. Qiqin, Y., Proc. 6th Int. Symp. Molten Salt Chem. Technol., Shanghai, 2001, p. 383.
  145. Su, Y.Z., Yang, Q.Q., and Liu, G.K., J. Rare Earths, 2000, vol. 18, p. 34.
  146. Samodelkina, O.V., Candidate Sci. (Chem.) Dissertation, Yekaterinburg, 2004.
  147. Soroka, V.V., Candidate Sci. (Chem.) Dissertation, Sverdlovsk, 1988.
  148. Kovalevskii, A.V. and Soroka, V.V., Abstract of Papers, XV Ross. Conf. on Physical Chemistry and Electrochemistry Spread and Solid Electrolytes, Yekaterinburg, 1998, vol. 1, p. 227.
  149. Kovalevskii, A.V. and Soroka, V.V., Rasplavy, 1988, vol. 2, no. 6, p. 28.
  150. Bukatova, G.A., Kuznetsov, S.A., Electrochem. Commun., 2005, vol. 73, no. 8, p. 208.
  151. Bukatova, G.A., Kuznetsov, S.A., and GauneEscard, M., Russ. J. Electrochem., 2007, vol. 43, no. 8, p. 929. https://doi.org/10.1134/S1023193507080113
  152. Tolstobrov, I.V. and El’kin, O.V., Vestn. Tekhnol. Univ. Kazan, 2016, vol. 19, no. 15, p. 103.
  153. Kushkhov, Kh.B. and Kardanova, R.A., Izv. Vuzov, Poroshk. Metallurg. Funkts. Pokrytiya, 2016, no. 2, p. 9. https://doi.org/10.17073/1997-308X-2016-2-9-14
  154. Kushkhov, Kh.B. and Kardanova, R.A., Tr. Kol’sk. NS RAN, 2015, no. 5, p. 243.
  155. Kushkhov, Kh.B. and Kardanova, R.A., RF Patent 2621508, 2017.
  156. Kushkhov, Kh.B., Asanov, A.M., and Shogenova, D.L., RF Patent 2514237, 2014. RF.
  157. Kushkhov, Kh.B., Kardanova, R.A., Khasanov, V.V., and Borukaeva, I.A., Rasplavy, 2018, no. 3, p. 336. https://doi.org/10.7868/S0235010618030106
  158. Kushkhov, Kh.B., Mukozheva, R.A., Vindizheva, M.K., Abazova, A.Kh., and Marzhohova, M.Kh., RF Patent 2695346, 2019.
  159. Andrieux, L., Ann. Chim., 1929, vol. 12, p. 422.
  160. Stackelberg, M. and Neuman, F., J. Phys.Chem. (B), 1932, vol. , 19, p. 314.
  161. Bertaut, F. and Blume, P., Acta Cryst., 1954, vol. 7, p. 81. https://doi.org/10.1107/S0365110X54000151
  162. Post, В., Moskovitz, D., and Glaser, F., J. Chem. Soc., 1956, vol. 78, p. 1800.
  163. Bukatova, G. and Kuznetsov, S., Electrochem. Commun., 2005, vol. 7, no. 6, p. 637. https://doi.org/10.1016/j.elecom.2005.04.003
  164. Berchmans, L.J., Visuvasam, A., Angappan, S., Subramanian, C., and Suri, A.K., Ionics, 2010, vol. 16, p. 833. https://doi.org/10.1007/s11581-010-0469-3
  165. Samsonov, G.V., Russ. Chem. Rev., 1962, vol. 31, no. 12, p. 702. https://doi.org/10.1070/RC1962v031n12ABEH001333
  166. Dodero, M., Compt. Rendus. Seances Del’Acad. Sci., 1934, vol. 109, p. 566
  167. Kushkhov, Kh.B., Vindizheva, M.K., Mukozheva, R.A., and Kalibatova, M.N., Izv. Vuzov, Poroshk. Metallurg. Funkts. Pokrytiya, 2014, no. 2, p. 11. https://doi.org/10.17073/1997-308X-2014-2-730-731
  168. Kushkhov, Kh.B., Vindizheva, M.K., Mukozheva, R.A., Tlenkopachev, M.R., and Kalibatova, M.N., Izv. KBGU, 2013, vol. 3, no. 3, p. 31.
  169. Kushkhov, Kh.B., Vindizheva, M.K., Uzdenova, A.S., Mukozheva, R.A., Tlenkopachev, M.R., and Nafonova, M.N., RF Patent 2477340, 2013.
  170. Kushkhov, H.B., Mukozheva, R.A., Vindizheva, M.K., Abazova, A.H., and Tlenkopachev, M.R., J. Mater. Sci. Chem. Eng., 2014, no. 2, p. 57. https://doi.org/10.4236/msce.2014.21010
  171. Kushkhov, Kh.B., Zhanikaeva, Z.A., Adamokova, M.N., and Chuksin, S.I., RF Patent 2393115, 2010.
  172. Kushkhov, Kh.B., Zhanikaeva, Z.A., Adamokova, M.N., and Chuksin, S.I., RF Patent 2389684, 2010.
  173. Kushkhov, Kh.B., Uzdenova, A.S., Kakhtan, A.M., Salekh, M.M.A., and Kozyreva, M.R., Abstract of Papers, XV Ross. Conf. on Physical Chemistry and Electrochemistry Spread and Solid Electrolytes, Nal’chik, 2010, vol. 2, p. 185.
  174. Kushkhov, Kh.B., Uzdenova, A.S. Mukozheva, R.A., Vindizheva, M.K., and Salekh, M.M.A., RF Patent 2507314, 2014.
  175. Kushkhov, Kh.B., Uzdenova, A.S., Salekh, M.M.A., and Uzdenova, L.A., RF Patent 2466217, 2012.
  176. Kushkhov, Kh.B., Uzdenova, A.S., Qahtan, A.M.F., Tlenkopachev, M.R., and Uzdenova, L.A., SOP Trans. Phys. Chem., 2014, vol. 2, no. 1, p. 9.
  177. Kushkhov, Kh.B., Uzdenova, A.S., Kakhtan, A.M.F., and Uzdenova, L.A., RF Patent 2510630, 2014.
  178. Kushkhov, Kh.B., Mukozheva, R.A., Vindizheva, M.K., and Abazova, A.Kh., RF Patent 2539523, 2015.