Examples



mdbootstrap.com



 
Статья
2021

On the Application of Pulsed Beams with a Wide Electron Kinetic Energy Spectrum


I. S. EgorovI. S. Egorov, A. A. IsemberlinovaA. A. Isemberlinova, A. V. PoloskovA. V. Poloskov, M. A. SerebrennikovM. A. Serebrennikov, S. A. NuzhnykhS. A. Nuzhnykh, G. E. RemnevG. E. Remnev
Российский физический журнал
https://doi.org/10.1007/s11182-021-02223-7
Abstract / Full Text

The application features of pulsed electron beams with a wide electron kinetic energy spectrum for solving practical problems are considered on the example of wheat seed treatment. The influence of the dose depth distribution determined by the beam spectrum on the efficiency of its application is shown. For the ASTRA-M electron accelerator based on a pulse transformer, an operating mode has been found (accelerating voltage of 260 kV at 0.15 kGy) in which the beam energy is released mainly in the surface layer of biological materials. This leads to a sharp decrease in the degree of infection with Penicillium spp. fungi while maintaining seed germination.

Author information
  • National Research Tomsk Polytechnic University, Tomsk, RussiaI. S. Egorov, A. A. Isemberlinova, A. V. Poloskov, M. A. Serebrennikov & G. E. Remnev
  • National Research Tomsk State University, Tomsk, RussiaS. A. Nuzhnykh
References
  1. V. L. Auslender, A. J. Berejka, J. L. Bol, et al., Industrial Radiation Treatment with Electron Beams and XRays, IAEA TECDOC, Vienna (2011); http://www.cirms.org/pdf/Industrial%20Radiation%20Treatment%20-20May%202011%20-%20Revision%206.pdf.
  2. R. K. Bhandari and M. K. Dey, Energy Procedia, 7, 577–588 (2011).
  3. M. N. Martins and T. F. Silva, Rad. Phys. Chem., 95, 78–85 (2014).
  4. M. Cleland, in: Proc. CAS 2005 – CERN Accelerator School: Small Accelerators, Geneva (2006), pp. 383–416.
  5. A. Chmielewski and M. Haji-Saeid, Rad. Phys. Chem., 71, Nos. 1–2, 17–21 (2004).
  6. D. I. Proskurovsky, V. P. Rotshtein, and G. E. Ozur, Surf. Coat. Technol., 96, No. 1, 117–122 (1997).
  7. R. Mehnert, Nucl. Instrum. Methods Phys. Res. B, 105, Nos. 1–4, 348–358 (1995).
  8. T. Calado, A. Venâncio, and L. Abrunhosa, in: Comprehensive Reviews in Food Science and Food Safety, 13, No. 5 1049–1061 (2014).
  9. M. A. Jeong and R. D. Jeong, Plant Pathol., 67, No. 1, 18–29 (2018).
  10. I. S. Egorov, A. V. Poloskov, M. A. Serebrennikov, and G. E. Remnev, in: Materials of the 13th Int. Conf. “Interaction of Radiation with Solids,” Minsk (2019), pp. 530–532.
  11. I. S. Egorov et al., Instrum. Exp. Tech., 56, No. 5, 568–570 (2013).
  12. I. Egorov et al., IEEE Trans. Dielectr. Elect. Insul., 20, No. 4, 1334–1339 (2013).
  13. A. Poloskov et al., Nucl. Instrum. Methods Phys. Res. A, 969, 163951 (2020).
  14. V. D. Bochkov et al., Acta Phys. Polonica A, 115, No. 6, 1118–1121 (2009).
  15. I. S. Egorov et al., Instrum. Exp. Tech., 58, No. 1, 64–66 (2015).
  16. I. Egorov et al., Vacuum, 143, 428–432 (2017).
  17. A. Poloskov et al., J. Phys.: Conf. Ser., 1393, No. 1, 012115 (2019).
  18. R. Braghini et al., Appl. Rad. Isotop., 67, No. 9, 1622–1628 (2009).
  19. T. Yu. Gagkaeva, O. P. Gavrilova, M. M. Levitin, and K. V. Novozhilov, Zashch. Karant. Rast., No. 5, 63–120 (2011).
  20. L. Escrivá et al., J. Food Qual., 2017, 1–20 (2017).
  21. T. A. Smolyagina, O. M. Minaeva, and E. E. Akimova, Tomsk State Univ. J. Biology, 3, No. 5, 67–70 (2011).
  22. X. Li and M. Farid, J. Food Eng., 182, 33–45 (2016).
  23. A. A. Isemberlinova, S. A. Nuzhnykh, M. V. Chubik, et al., in: Topic Issues of Modern Problems of Radiobiology, Radioecology and Agroecology, Proc. Int. Youth Conference, Obninsk (2019), pp. 268–270.
  24. A. A. Isemberlinova et al., Key Eng. Mater. IEEE, 769, 172–180 (2018).
  25. I. S. Egorov, A. A. Isemberlinova, M. A. Serebrennikov, et al., Russ. Phys. J., 63, No. 7, 1144–1149 (2020).