Effect of Dissolved Oxygen on the Corrosion Rate of Stainless Steel in a Sodium Chloride Solution

K. V. Rybalka K. V. Rybalka , L. A. Beketaeva L. A. Beketaeva , A. D. Davydov A. D. Davydov
Российский электрохимический журнал
Abstract / Full Text

The corrosion currents of 17-4РН stainless steel in an NaCl solution at various contents of dissolved oxygen are obtained by the method of Tafel extrapolation. It is shown that the dependences of the corrosion current on the concentration of dissolved oxygen are significantly different on the passive and cathodically activated specimens; however, they are similar after preliminary cathodic activation and after the anodic activation with chloride ions.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    K. V. Rybalka, L. A. Beketaeva & A. D. Davydov

  1. McCloskey, T.H., Dooley, R.B., and McNaughton, W.P., Turbine Steam Path Damage, Palo Alto, CA: EPRI, 1999.
  2. Syrett, B.C., Viswanathan, R., Wing, S.S., and Wittig, J.E., Effect of microstructure on pitting and corrosion fatigue of 17-4PH turbine blade steel in chloride environments, Corrosion, 1982, vol. 38, no. 5, p.273.
  3. Davis, J.A. and Gehring, G.A., Effect of velocity on the seawater corrosion behavior of high-performance ship materials, Mater. Perform., 1975, vol. 14, no. 4, p. 32.
  4. Skorcheletti, V.V., Teoreticheskie osnovy korrozii metallov (Theoretical Basis of Metal Corrosion), Leningrad: Khimiya, 1973.
  5. Angal, R.D., Principles and Prevention of Corrosion, Oxford, United Kingdom: Alpha Science International, 2010.
  6. Kim, H.T., Paik, C.H., Cho, W.I., Cho, B.W., Yun, K.S., Kim, Y.H., Ju, J.B., Kim, J.S., Kang, M.S., Ha, J.S., and Kim, K.Y., Effect of dissolved oxygen and hydrogen ion on corrosion rate and passivation of carbon steel boiler tube, J. Ind. Eng. Chem., 1997, vol. 3, p. 51.
  7. Kawai, N., Wada, K., Hirano, H., Naganuma, T., Sueyoshi, M., Nakui, H., Saito, I., and Asakura, S., Critical concentration of dissolved oxygen to form protective iron oxides under combined water treatment conditions, Corros. Eng. Sci. Techn., 2003, vol. 38, p. 286.
  8. Xue, F., Wei, X., Dong, J., Nabuk Etim, I.-I., and Wang, C., Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1M NaHCO3 solution, J. Mater. Sci. Technol., 2018, vol. 34, p. 1349.
  9. Wang, S., Liu, D., Du, N., Zhao, Q., Liu, S., and Xiao, J., Relationship between dissolved oxygen and corrosion characterization of X80 steel in acidic soil simulated solution, Int. J. Electrochem. Sci., 2015, vol. 10, p. 4393.
  10. Stansbury, E.E. and Buchanan, R.A., Fundamentals of the Electrochemical Corrosion, Materials Park, Ohio: ASM International, 2000, ch. 6.
  11. McCafferty, E., Introduction to Corrosion Science, NewYork, Springer, 2010, ch. 7.
  12. Mansfeld, F., Advances in Corrosion Science and Technology, vol. 6, Fontana, G. and Staehle, R.W., Eds., New York: Plenum, 1976, ch. 2.
  13. Davydov, A.D., Shaldaev, V.S., and Engel’gardt, G.R., Pitting on the 20Kh13 steel in chloride solutions, Russ. J. Electrochem., 2006, vol. 42, p. 121.