Статья
2018

Electrochemical and Opto-Electronic Properties of Carbazole-Based Derivatives with Symmetric A–CZ–A Architecture


S. Golba S. Golba
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518070030
Abstract / Full Text

In this work novel bisheterocyclic derivatives of alkylcarbazole with A–CZ–A architecture are investigated (CZ stands for alkylcarbazole). The study presents their opto-electronic and electrochemical properties which influence on the possibility of their prospective application. Monomers undergo electropolymerisation with formation of conducting layer of polythiophene derivatives, while presence of chalcone moiety hampers the process. Two-step oxidation processes of polymers results in generation of polaron and bipolaron types of charge carriers on the macromoleculs’ chains. The charge is delocalized over center and side subunits (bithiophene or bithiazole one) in first stage of oxidation. It is possible to influence on the properties of the polymers and their composition by variation of synthesis condition like solvent polarity and applied potential boundaries. Obtained conducting polymers show high stability under ambient conditions. Their energy gap values are estimated with electrochemical and spectroscopic methods.

Author information
  • University of Silesia, Institute of Materials Science, Chorzow, 41-500, Poland

    S. Golba

References
  1. Ren, G., Schlenker, C.W., Ahmed, E., Subramaniyan, S., Olthof, S., Kahn, A., Ginger, D.S., and Jenekhe, S.A., Photoinduced hole transfer becomes suppressed with diminished driving force in polymer-fullerene solar cells while electron transfer remains active, Adv. Funct. Mater., 2013, vol. 23, no. 10, pp. 1238–1249. doi 10.1002/adfm.201201470
  2. Sun, J., Zhang, B., and Katz, H.E., Materials for printable, transparent, and low-voltage transistors, Adv. Funct. Mater., 2011, vol. 21, no. 1, pp. 29–45. doi 10.1002/adfm.201001530
  3. Blacha, A., Koscielniak, P., Sitarz, M., Szuber, J., and Zak, J., Pedot brushes electrochemically synthesized on thienyl-modified glassy carbon surfaces, Electrochim. Acta, 2012, vol. 62, pp. 441–446. doi 10.1016/j.electacta.2011.12.063
  4. Prakash, R., Srivastava, R., and Pandey, P., Copper( II) ion sensor based on electropolymerized undoped conducting polymers, J. Solid State Electrochem., 2002, vol. 6, no. 3, pp. 203–280. doi 10.1007/s100080100213
  5. Baig, U., Wani, W.A., and Hun, L.T., Facile synthesis of an electrically conductive polycarbazole–zirconium( IV)phosphate cation exchange nanocomposite and its room temperature ammonia sensing performance, New J. Chem., 2015, vol. 39, pp. 6882–6891. doi 10.1039/C5NJ01029B
  6. Temsamani, K.R., Ceylan, Ö., Yates, B.J., Öztemiz, S., Gbatu, T.P., Stalcup, A.M., Mark, H.B., Jr., and Kutner, W., Electrochemically aided solid phase microextraction: Conducting polymer film material applicable for cationic analytes, J. Solid State Electrochem., 2002, vol. 6, no. 7, pp. 494–497. doi 10.1007/s10008-002-0265-8
  7. Srisawasdi, T., Petcharoen, K., Sirivat, A., and Jamieson, A.M., Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material, Mater. Sci. Eng., C, 2015, vol. 56, no. 1, pp. 1–8. doi 10.1016/j.msec.2015.06.005
  8. Forcelli, P.A., Sweeney, C.T., Kammerich, A.D., Lee, B.C.W., Rubinson, L.H., Kayinamura, Y.P., Gale, K.N., and Rubinson, J.F, Histocompatibility and in vivo signal throughput for PEDOT, PEDOP, P3MT, and polycarbazole electrodes, J. Biomed. Mater. Res., Part A, 2012, vol. 100, no. 12, pp. 3455–3462. doi 10.1002/jbm.a.34285
  9. Thorngkham, P., Paradee, N., Niamlang, S., and Sirivat, A., Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery, J. Pharm. Sci., 2015, vol. 104, no. 5, pp. 1795–1803. doi 10.1002/jps.24414
  10. Brière, J.-F. and Côté, M., Electronic, structural, and optical properties of conjugated polymers based on carbazole, fluorene, and borafluorene, J. Phys. Chem. B, 2004, vol. 108, pp. 3123–3129. doi 10.1021/jp035363a
  11. Sezai Sarac, A., Ates, M., and Altürk Parlak, E., Electrolyte and solvent effects of electrocoated polycarbazole thin films on carbon fiber microelectrodes, J. Appl. Electrochem., 2006, vol. 36, no. 8, pp. 889–898. doi 10.1007/s10800-006-9145-8
  12. Lapkowski, M., Zak, J., Karon, K., Marciniec, B., and Prukala, W., The mixed carbon–nitrogen conjugation in the carbazole based polymer; the electrochemical, UVVis, EPR, and IR studies on 1,4-bis[(E)2-(9H-carbazol-9-yl)vinyl]benzene, Electrochim. Acta, 2011, vol. 56, pp. 4105–4111. doi 10.1016/j.electacta.2011.01.114
  13. Morin, J.F., Leclerc, M., Adès, D., and Siove, A., Polycarbazoles: 25 years of progress, Macromol. Rapid Commun., 2005, vol. 26, no. 10, pp. 761–778. doi 10.1002/marc.200500096
  14. Laba, K., Data, P., Zassowski, P., Karon, K., Lapkowski, M., Wagner, P., Officer, D.L., and Wallace, G.G., Electrochemically Induced Synthesis of poly(2,6-carbazole), Macromol. Rapid Commun., 2015, vol. 36, no. 19, pp. 1749–1755. doi 10.1002/marc.201500260
  15. Jenekhe, S.A. and Osaheni, J.A., Excimers and exciplexes of conjugated polymers, Science, 1994, vol. 265, no. 5173, pp. 765–768. doi 10.1126/science.265.5173.765
  16. Bonesi, S.M. and Erra-Balsells, R., Electronic spectroscopy of carbazole and N-and C-substituted carbazoles in homogeneous media and in solid matrix, J. Lumin., 2001, vol. 93, pp. 51–74. doi 10.1016/S0022-2313(01)00173-9
  17. Leclerc, N., Michaud, A., Sirois, K., Morin, J.F., and Leclerc, M., Synthesis of 2,7-carbazolenevinylenebased copolymers and characterization of their photovoltaic properties, Adv. Funct. Mater., 2006, vol. 16, no. 13, pp. 1694–1704. doi 10.1002/adfm.200600171
  18. Karon, K. and Lapkowski, M., Carbazole electrochemistry: A short review, J. Solid State Electrochem., 2015, vol. 19, no. 9, pp. 2601–2610. doi 10.1007/s10008-015-2973-x
  19. Blouin, N., Michaud, A., and Leclerc, M., A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells, Adv. Mater., 2007, vol. 19, no. 17, pp. 2295–2300. doi 10.1002/adma.200602496
  20. Bernius, M.T., Inbasekaran, M., O’Brien, J., and Wu, P., Progress with light-emitting polymers, Adv. Mater., 2000, vol. 12, pp. 1737–1750. doi 10.1002/1521-4095(200012)12:23<1737
  21. Liu, Q.D., Lu, J., Ding, J., Day, M., Tao, Y., Barrios, P., Stupak, J., Chan, K., Li, J., and Chi, Y., Monodisperse starburst oligofluorene-functionalized 4,4′,4″-tris(carbazol-9-yl)-triphenylamines: Their synthesis and deep-blue fluorescent properties for organic light-emitting diode applications, Adv. Funct. Mater., 2007, vol. 17, no. 6, pp. 1028–1036. doi 10.1002/adfm.200600104
  22. Weinfurtner, K., Fujikawa, H., Tokito, S., and Taga, Y, Highly efficient pure blue electroluminescence from polyfluorene: Influence of the molecular weight distribution on the aggregation tendency, Appl. Phys. Lett., 2000, vol. 76, no. 18, pp. 2502–2504. doi 10.1063/1.126389
  23. Setayesh, S., Marsitzky, D., and Müllen, K., Bridging the gap between polyfluorene and ladder-poly-pphenylene: Synthesis and characterization of poly-2,8-indenofluorene, Macromolecules, 2000, vol. 33, pp. 2016–2020. doi 10.1021/ma9914366
  24. Yamaguchi, S., Xu, C., and Tamao, K., Bis-siliconbridged stilbene homologues synthesized by new intramolecular reductive double cyclization, J. Am. Chem. Soc., 2003, vol. 125, no. 45, pp. 13662–13663. doi 10.1021/ja038487
  25. Jenekhe, S.A., Lu, L., and Alam, M.M., Synthesis and photophysics of carbazole−quinoline and phenothiazine−quinoline copolymers and oligomers exhibiting large intramolecular charge transfer, Macromolecules, 2001, vol. 34, no. 21, pp. 7315–7324. doi 10.1021/ma0100448
  26. Yasuda, T., Imase, T., Nakamura, Y., and Yamamoto, T., New alternative donor−acceptor arranged poly(aryleneethynylene)s and their related compounds composed of five-membered electron-accepting 1,3,4-thiadiazole, 1,2,4-triazole, or 3,4-dinitrothiophene units: Synthesis, packing structure, and optical properties, Macromolecules, 2005, vol. 38, no. 11, pp. 4687–4697. doi 10.1021/ma050398p
  27. Lapkowski, M., Data, P., Golba, S., Soloducho, J., and Nowakowska-Oleksy, A., Unusual band-gap migration of N-alkylcarbazole-thiophene derivative, Opt. Mater., 2011, vol. 33, no. 9, pp. 1445–1448. doi 10.1016/j.optmat.2011.02.018
  28. Choudhury, S., Saxena, V., Gupta, S.K., and Yakhmi, J.V., A study on Langmuir–Blodgett films of conducting polycarbazole, Thin Solid Films, 2005, vol. 493, nos. 1–2, pp. 267–272. doi 10.1016/j.tsf.2005.07.306
  29. Frau, A.F., Estillore, N.C., Fulghum, T.M., and Advincula, R.C., Intercalative poly(carbazole) precursor electropolymerization within hybrid nanostructured titanium oxide ultrathin films, ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 12, pp. 3726–3737. doi 10.1021/am100867q
  30. Grigalevicius, S., Simokaitienea, J., Grazulevicius, J.V., Ma, L., and Xiel, Z., Hole-transporting polymers containing carbazol-3,9-diyl and 1,4-phenylene fragments in the main chain, Synth. Met., 2008, vol. 158, nos. 19–20, pp. 739–743. doi 10.1016/j.synthmet.2008.04.025
  31. Tsai, M.H., Ke, T.H., Lin, H.W., Wu, Ch.Ch., Chiu, S.F., Fang, F.Ch., Liao, Y.L., Wong, K.T., Chen, Y.H., and Wu, Ch.I., Triphenylsilyl-and tritylsubstituted carbazole-based host materials for blue electrophosphorescence, ACS Appl. Mater. Interfaces, 2009, vol. 1, no. 3, p. 567. doi 10.1021/am800124q
  32. Dong, S., Li, Z., and Qin, J., New carbazole-based fluorophores: Synthesis, characterization, and aggregation-induced emission enhancement, J. Phys. Chem. B, 2009, vol. 113, p. 434–441. doi 10.1021/jp807510a
  33. Li, J., Zhang, T., Liang, Y., and Yang, R., Solutionprocessible carbazole dendrimers as host materials for highly efficient phosphorescent organic light-emitting diodes, Adv. Funct. Mater., 2013, vol. 23, no. 5, pp. 619–628. doi 10.1002/adfm.201201326
  34. Tacca, A., Po, R., Caldararo, M., Chiaberge, S., Gila, L., Longo, L., Mussini, P.R., Pellegrino, A., Perin, N., Salvalaggi, M., Savoini, A., and Spera, S., Ternary thiophene–X–thiophene semiconductor building blocks (X = fluorene, carbazole, phenothiazine): Modulating electronic properties and electropolymerization ability by tuning the X core, Electrochim. Acta, 2011, vol. 56, pp. 6638–6653. doi doi 10.1016/j.electacta.2011.05.036
  35. Kawabata, K. and Goto, H., Electrosynthesis of 2,7-linked polycarbazole derivatives to realize low-bandgap electroactive polymers, Synth. Met., 2010, vol. 160, nos. 21–22, pp. 2290–2298. doi 10.1016/j.synthmet. 2010.08.023
  36. Lapkowski, M., Data, P., Nowakowska-Oleksy, A., Soloducho, J., and Roszak, Sz., Electrochemical characterization of alternate conducting carbazole–bisthiophene units, Mat. Chem. Phys., 2012, vol. 131, no. 3, pp. 757–763. doi 10.1016/j.matchemphys. 2011.10.047
  37. Tsuji, M., Saeki, A., Koizumi, Y., Matsuyama, N., Vijayakumar, Ch., and Seki, S., Benzobisthiazole as weak donor for improved photovoltaic performance: Microwave conductivity technique assisted molecular engineering, 2014, vol. 24, no. 1, pp. 28–36. doi 10.1002/adfm.201301371
  38. Shim, H.K., Ahn, T., and Song, S.Y., Synthesis and LED device properties of carbazole and naphthalene contained conjugated polymers, Thin Solid Films, 2002, vol. 417, nos. 1–2, p. 7. doi 10.1016/S0040-6090(02)00637-5
  39. Baycan Koyuncu, F., An ambipolar electrochromic polymer based on carbazole and naphthalene bisimide: Synthesis and electro-optical properties, Electrochim. Acta, 2012, vol. 68, pp. 184–191. doi 10.1016/j.electacta.2012.02.048
  40. Vaitkeviciene, V., Kruzinauskiene, A., Grigalevicius, S., Grazulevicius, J.V., Rutkaiteb, R., and Jankauskas, V., Well-defined [3,3′]bicarbazolyl-based electroactive compounds for optoelectronics, Synth. Met., 2008, vol. 158, nos. 8–9, pp. 383–390. doi 10.1016/j.synthmet. 2008.02.013
  41. Ates, M., Uludag, N., Karazehir, T., and Aricana, F., Synthesis of 2-(3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9H-carbazole-9-yl)ethyl methacrylate, electropolymerization, characterization and impedimetric study, J. Electrochem. Soc., 2013, vol. 160, no. 1, pp. G46–G54. doi 10.1149/2.011302jes
  42. Kim, Y. and Bradley, D.D.C., Bright red emission from single layer polymer light-emitting devices based on blends of regioregular P3HT and F8BT, Curr. Appl. Phys., 2005, vol. 5, no. 3, pp. 222–226. doi 10.1016/j.cap.2003.11.090
  43. Mitschke, U., Debaerdemaeker, T., and Bauerle, P., Structure-property relationships in mixed oligoheterocycles based on end-capped oligothiophenes, Eur. J. Org. Chem., 2000, vol. 3, pp. 425–437. doi 10.1002/(SICI)1099-0690(200002)2000
  44. Hong, X.M., Katz, H.E., Lovinger, A.J., Wang, B.C., and Raghavachari, K., Thiophene-phenylene and thiophene-thiazole oligomeric semiconductors with high field-effect transistor on/off ratios, Chem. Mater., 2001, vol. 13, no. 12, pp. 4686–4691. doi 10.1021/cm010496z
  45. Mamada, M., Nishida, J.I., Kumaki, D., Tokito, S., and Yamashita, Y., n-Type organic field-effect transistors with high electron mobilities based on thiazole−thiazolothiazole conjugated molecules, Chem. Mater., 2007, vol. 19, pp. 5404–5409. doi 10.1021/cm071505s
  46. Lee, J., Curtis, M.D., and Kampf, J.W., Unusual thermal polymerization of 1,4-bis-5-(4,4'-dialkyl-2,2'-bithiazolyl)-1,3-butadiynes: Soluble polymers from diacetylenes, Macromolecules, 2000, vol. 33, no. 6, pp. 2136–2144. doi 10.1021/ma9911290
  47. Nanos, J.I., Kampf, J.W., Curtis, M.D., Gonzalez, L., and Martin, D.C., Poly(alkylbithiazoles): A new class of variable-bandgap, conjugated polymer, Chem. Mater., 1995, vol. 7, no. 12, pp. 2232–2234. doi 10.1021/cm00060a006
  48. Caballero, A., Lloveras, V., Curiel, D., Tárraga, A., Espinosa, A., García, R., Vidal-Gancedo, J., Rovira, C., Wurst, K., Molina, P., and Veciana, J., Electroactive thiazole derivatives capped with ferrocenyl units showing charge-transfer transition and selective ion-sensing properties: A combined experimental and theoretical study, Inorg. Chem., 2007, vol. 46, no. 3, pp. 825–838. doi 10.1021/ic061803b
  49. Jenkins, H.I. and Pickup, P.G., Electronically conducting polymers containing conjugated bithiazole moieties from bis(thienyl)bithiazoles, Macromolecules, 1993, vol. 26, no. 17, pp. 4450–4456. doi 10.1021/ma00069a008
  50. Hong, X.M., Katz, H.E., Lovinger, A.J., Wang, B.C., and Raghavachari, K., Thiophene-phenylene and thiophene-thiazole oligomeric semiconductors with high field-effect transistor on/off ratios, Chem. Mater., 2001, vol. 13, no. 12, pp. 4686–4691. doi 10.1021/cm010496z
  51. Curtis, M.D., Cheng, H., and Nanos, J.I., Reversible n-doping of poly(nonylbithiazole) and oligomeric model compounds. Application as a Li battery electrode, Macromolecules, 1998, vol. 31, no. 1, pp. 205–207. doi 10.1021/ma971285b
  52. Osaka, I., Zhang, R., Sauvé, G., Smilgies, D.M., Kowalewski, T., and McCullough, R.D., High-lamellar ordering and amorphous-like π-network in shortchain thiazolothiazole−thiophene copolymers lead to high mobilities, J. Am. Chem. Soc., 2009, vol. 131, no. 7, pp. 2521–2529. doi 10.1021/ja801475h
  53. Jin, Y., Ju, J., Kim, J., Lee, S., Kim, J.Y., Park, S.H., Son, S., Lee, K., and Suh, H., Design, dynthesis, and electroluminescent property of CN−poly(dihexylfluorenevinylene) for LEDs, Macromolecules, 2003, vol. 36, no. 19, pp. 6970–6975. doi 10.1021/ma025862u
  54. Doskocz, J., Doskocz, M., Roszak, S., Soloducho, J., and Leszczynski, J., Theoretical studies of symmetric five-membered heterocycle derivatives of carbazole and fluorene: Precursors of conducting polymers, J. Phys. Chem. A, 2006, vol. 110, pp. 13989–13994. doi 10.1021/jp0658896
  55. Cabaj, J., Idzik, K., Soloducho, J., and Chyla, A., Development in synthesis and electrochemical properties of thienyl derivatives of carbazole, Tetrahedron, 2006, vol. 62, no. 4, pp. 758–764. doi 10.1016/j.tet.2005.09.142
  56. Marrec, P., Dano, C., Guentner-Simonet, N., and Simonet, J., The anodic oxidation and polymerization of carbazoles and dicarbazoles N-substituted by polyether chains, Synth. Met., 1997, vol. 89, no. 3, pp. 171–179. doi 10.1016/S0379-6779(97)81214-3
  57. Inzelt, G., Formation and redox behaviour of polycarbazole prepared by electropolymerization of solid carbazole crystals immobilized on an electrode surface, J. Solid State Electrochem., 2003, vol. 7, no. 8, p. 503. doi 10.1007/s10008-003-0357-0
  58. Katritzky, A.R., Ramsden, Ch.A., Joule, J.A., and Zhdankin, V.V., Handbook of Heterocyclic Chemistry, 3rd ed., Elsevier, 2010.
  59. Osaheni, J.A. and Jenekhe, S.A., Synthesis and processing of heterocyclic polymers as electronic, optoelectronic, and nonlinear optical materials. 4. New conjugated rigid-rod poly(benzobis(imidazole))s, Macromolecules, 1995, vol. 28, no. 4, pp. 1172–1179. doi 10.1021/ma00108a053
  60. Anson, F.C., Blauch, D.N., Saveant, J.M., and Shu, C.F., Ion association and electric field effects on electron hopping in redox polymers. Application to the tris(2,2'-bipyridine)osmium(3+)/tris(2,2'-bipyridine) osmium(2+) couple in Nafion, J. Am. Chem. Soc., 1991, vol. 113, no. 6, pp. 1922–1932. doi 10.1021/ja00006a010
  61. Quintana-Espinoza, P., Yáñez, C., Escobar, C.A., Sicker, D., Araya-Maturana, R., and Squella. J.A., Electrochemical approach to the radical anion formation from 2′-hydroxy chalcone derivatives, Electroanalysis, 2006, vol. 18, no. 5, pp. 521–525. doi 10.1002/elan.200503422
  62. Palmquist, U., Nilsson, A., Parker, V.D., and Ronlán, A., Anodic oxidation of phenolic compounds. 4. Scope and mechanism of the anodic intramolecular coupling of phenolic diarylalkanes, J. Am. Chem. Soc., 1976, vol. 98, no. 9, pp. 2571–2580. doi 10.1021/ja00425a028
  63. Yamamoto, T., Suganuma, H., Maruyama, T., Inoue, T., Muramatsu, Y., Arai, M., Komarudin, D., Ooba, N., Tomaru, S., Sasaki, S., and Kubota, K., π-Conjugated and light emitting Poly(4,4′-dialkyl-2,2′-bithiazole-5,5′-diyl)s and their analogues comprised of electronaccepting five-membered rings. Preparation, regioregular structure, face-to-face stacking, and electrochemical and optical properties, Chem. Mater., 1997, vol. 9, no. 5, pp. 1217–1225. doi 10.1021/cm960601i
  64. Ambrose, J.F. and Nelson, R.F., Anodic oxidation pathways of carbazoles. I. Carbazole and N-substituted derivatives, J. Electrochem. Soc., 1968, vol. 115, no. 11, pp. 1159–1164. doi 10.1149/1.2410929
  65. Geissler, U., Hallensleben, M.L., Rienecker, A., and Rohde, N., Soluble polycarbazoles and carbazole modified electrodes, Synth. Met., 1997, vol. 84, p. 375. doi 10.1016/S0379-6779(97)80789-8
  66. Taranekar, P., Fulghum, T., Baba, A., Patton, D., and Advincula, R., Quantitative electrochemical and electrochromic behavior of terthiophene and carbazole containing conjugated polymer network film precursors: EC-QCM and EC-SPR, Langmuir, 2007, vol. 23, no. 2, pp. 908–917. doi doi 10.1021/la061820d
  67. Chevrot, C., Ngbilo, E., Kham, K., and Sadki, S., Optical and electronic properties of undoped and doped poly(N-alkylcarbazole) thin layers, Synth. Met., 1996, vol. 81, pp. 201–204. doi 10.1016/S0379-6779(96)03752-6
  68. Sezer, E. and Heinze, J., Voltammetric, EQCM, and in situ conductivity studies of 3,6-bis(2-thienyl)-Nethyl carbazole, Electrochim. Acta, 2006, vol. 51, pp. 3668–3673. doi 10.1016/j.electacta.2005.10.020
  69. Nie, G., Yang, H., Wang, S., and Li, X., High-quality inherently organic conducting polymers electrosynthesized from fused-ring compounds in a new electrolytic system based on boron trifluoride diethyl etherate, Crit. Rev. Solid State Mater. Sci., 2011, vol. 36, pp. 209–228. doi 10.1080/10408436.2011.593009
  70. Chen, W. and Xue, G., Low potential electrochemical syntheses of heteroaromatic conducting polymers in a novel solvent system based on trifluroborate–ethyl ether, Prog. Polym. Sci., 2005, vol. 30, no. 7, pp. 783–811. doi 10.1016/j.progpolymsci.2005.03.002
  71. Zhang, S., Nie, G., Hana, X., Xub, J., Li, M., and Cai, T., Electrosyntheses of high quality free-standing poly(9-fluorenone) films in boron trifluoride diethyl etherate, Electrochim. Acta, 2006, vol. 51, pp. 5738–5745. doi 10.1016/j.electacta.2006.03.010
  72. Zhang, Y., Huang, Z., Zeng, W., and Cao, Y., Synthesis and properties of novel electrophosphorescent conjugated polyfluorenes based on aminoalkyl-fluorene and bipyridine with rhenium(I) complexes, Polymer, 2008, vol. 49, no. 5, pp. 1211–122x. doi 10.1016/j.polymer.2008.01.042
  73. Bezgin, B., Chianer, A., and Onal, A.M., Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application, Thin Solid Films, 2008, vol. 516, no. 1, pp. 7329–7334. doi 10.1016/j.tsf.2008.02.003
  74. Bezgin, B., Yagan, A., and Onal, A.M., Electrochemical co-polymerization of a novel fluorene derivative with 3,4-ethylenedioxythiophene, J. Electroanal. Chem., 2009, vol. 632, nos. 1–2, pp. 143–148. doi 10.1016/j.jelechem.2009.04.011
  75. Nie, G., Xu, J., Zhang, S., and Han, X., Electrodeposition of high-quality polycarbazole films in composite electrolytes of boron trifluoride diethyl etherate and ethyl ether, J. Appl. Electrochem., 2006, vol. 36, pp. 937–944. doi 10.1007/s10800-006-9151-x
  76. Xu, J.K., Hou, J., Zhang, S.S., Nie, G.M., Pu, S.Z., Shen, L., and Xiao, Q., Electrosyntheses of high quality freestanding polyselenophene films in boron trifluoride diethyl etherate, J. Electroanal. Chem., 2005, vol. 578, no. 2, pp. 345–355. doi 10.1016/j.jelechem. 2005.01.016
  77. Xu, J.K., Hou, J., Zhou, W.Q., Nie, G.M., Pu, S.Z., and Zhang, S.S., 1H NMR spectral studies on the polymerization mechanism of indole and its derivatives, Spectrochim. Acta, Part A, 2006, vol. 63, no. 3, pp. 723–728. doi 10.1016/j.saa.2005.06.025
  78. Gupta, B., Kumar Singh, A., and Prakash, R., Electrolyte effects on various properties of polycarbazole, Thin Solid Films, 2010, vol. 519, no. 3, pp. 1016–1019. doi 10.1016/j.tsf.2010.08.034
  79. Skotheim, T.A., Elsenbaumer, R.L., and Renolds, J.R., Handbook of Conducting Polymers, 2nd ed., New York: Marcel Dekker, 1998.
  80. Odin, C. and Nechtschein, M., Slow relaxation in conducting polymers: The case of poly(3-methylthiophene), Synth. Met., 1991, vol. 44, no. 2, p. 177. doi 10.1016/0379-6779(91)91833-V
  81. Zhang, Z.B., Fujiki, M., Tang, H.Z., Motonaga, M., and Torimitsu, K., The first high molecular weight poly(N-alkyl-3,6-carbazole)s, Macromolecules, 2002, vol. 35, no. 6, pp. 1988–1990. doi 10.1021/ma011911b
  82. Iraqi, A. and Wataru, I., Preparation of poly(9-alkylcarbazole-3,6-diyl)s via palladium catalysed crosscoupling reactions, Synth. Met., 2001, vol. 119, p. 159. oi doi 10.1016/S0379-6779(00)01306-0
  83. Imae, I., Nawa, K., Ohsedo, Y., Noma, N., and Shirota, Y., Synthesis of a novel family of electrochemically-doped vinyl polymers containing pendant oligothiophenes and their electrical and electrochromic properties, Macromolecules, 1997, vol. 30, no. 3, pp. 380–386. doi 10.1021/ma961250w
  84. Roncali, J., Conjugated poly(thiophenes): Synthesis, functionalization, and applications, Chem. Rev., 1992, vol. 92, no. 4, pp. 711–738. doi 10.1021/cr00012a009
  85. Morin, J.F. and Leclerc, M., 2,7-Carbazole-based conjugated polymers for blue, green, and red light emission, Macromolecules, 2002, vol. 35, no. 20, pp. 8413–8417. doi 10.1021/ma020880x
  86. Verghese, M.M., Sundaresan, N.S., Basu, T., and Malhotra, B.D., Electroactivity and proton doping of polycarbazole, J. Mater. Sci. Lett., 1995, vol. 14, no. 6, pp. 401–404. doi 10.1007/BF00274553
  87. Sonntag, M. and Strohriegl, P., Novel 2,7-linked carbazole trimers as model compounds for conjugated carbazole polymers, Chem. Mater., 2004, vol. 16, no. 23, pp. 4736–4742. doi 10.1021/cm040142i
  88. Iraqui, A. and Wataru, I., Preparation and properties of 2,7-linked N-alkyl-9H-carbazole main-chain polymers, Chem. Mater., 2004, vol. 16, no. 3, pp. 442–448. doi 10.1021/cm031078s
  89. Admassie, S., Inganas, O., Mammo, W., Perzon, E., and Andersson, M.R., Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers, Synth. Met., 2006, vol. 156, p. 614. doi 10.1016/j.synthmet.2006.02.013
  90. Muhlbacher, D., Neugebauer, H., Cravino, A., and Sariciftci, N.S., Comparison of the electrochemical and optical bandgap of low-bandgap polymers, Synth. Met., 2003, vol. 137, pp. 1361–1362. doi 10.1016/S0379-6779(02)01057-3
  91. Johansson, T., Mammo, W., Svensson, M., Andersson, M.R., and Inganas, O., Electrochemical bandgaps of substituted polythiophenes, J. Mater. Chem., 2003, vol. 13, pp. 1316–1323. doi 10.1039/B301403G
  92. Liu, Y., Cao, H., Ianghui Li, J., Chen, Z., Cao, S., Xiao, L., Xu, S., and Gong, Q., Synthesis and electroluminescent properties of a phenothiazine-based polymer for nondoped polymer light-emitting diodes with a stable orange-red emission, J. Polym. Sci., Part A: Polym. Chem., 2007, vol. 45, no. 21, pp. 4867–4878. doi 10.1002/pola.22237
  93. van Dijken, A., Bastiaansen, J.J.A.M., Kiggen, N.M.M., Langeveld, B.M.W., Rothe, C., Monkman, A., Bach, I., Stössel, P., and Brunner, K., Carbazole compounds as host materials for triplet emitters in organic lightemitting diodes: Polymer hosts for high-efficiency light-emitting diodes, J. Am. Chem. Soc., 2004, vol. 126, pp. 7718–7727. doi 10.1021/ja049771j
  94. Qiu, Y.J. and Reynolds, J.R., Poly[3,6-(carbaz-9-yl)propanesulfonate]: A self-doped polymer with both cation and anion exchange properties, J. Electrochem. Soc., 1990, vol. 137, no. 3, pp. 900–904. doi 10.1149/1.2086575
  95. Zotti, G., Schiavon, G., Zecchin, S., and Groenendaal, L., Conductive and magnetic properties of poly(3,6-bis(2-(3,4-ethylenedioxy)thienyl)-Ndodecylcarbazole). A polyconjugated polymer with a high spin density polaron state, Chem. Mater., 1999, vol. 11, no. 12, pp. 3624–3628. doi 10.1021/cm990408z
  96. Oumi, M., Maurice, D., and Gordon, M.H., Ab initio calculations of the absorption spectrum of chalcone, Spectrochim. Acta, Part A, 1999, vol. 55, no. 3, pp. 525–537. doi 10.1016/S1386-1425(98)00260-1
  97. Ha, S.T. and Low, Y.W., 2013, J. Chem., Article ID 943723, doi 10.1155/2013/943723
  98. Barnabas, M.V., Liu, A., Trifuniac, A.D., Krongauz, V.V., and Chang, C.T., Solvent effects on the photochemistry of a ketocyanine dye and its functional analog. Michler’s ketone, J. Phys. Chem., 1992, vol. 96, no. 1, pp. 212–217. doi 10.1021/j100180a041
  99. Maynadié, J., Delavaux-Nicot, B., Lavabre, D., and Fery-Forgues, S., Monosubstituted ferrocenyl chalcones: Effect of structural changes upon the ability to detect calcium by absorption spectroscopy, J. Organomet. Chem., 2006, vol. 691, no. 6, pp. 1101–1109. doi 10.1016/j.jorganchem.2005.11.021
  100. Subramanian, K., Krishnasamy, V., Nanjundan, S., and Rami Reddy, A.V., Photosensitive polymer: Synthesis, characterization and properties of a polymer having pendant photocrosslinkable group, Eur. Polym. J., 2000, vol. 36, no. 11, pp. 2343–2350. doi 10.1016/S0014-3057(00)00008-2
  101. Choi, D.H., Oh, S.J., Cha, H.B., and Lee, J.Y., Photochemically bifunctional epoxy compound containing a chalcone moiety, Eur. Polym. J., 2001, vol. 37, no. 10, pp. 1951–1959. doi 10.1016/S0014-3057(01)00102-1
  102. Kim, J.H., Ban, S.Y., Kaihua, and S., Choi, D.H., Photochromic behavior of new bifunctional copolymer containing spiropyran and chalcone moiety in the side chain, Dyes Pigm., 2003, vol. 58, no. 2, pp. 105–112. doi 10.1016/S0143-7208(03)00052-4
  103. Choi, D.H. and Cha, Y.K., Optical anisotropy of chalcone-based epoxy compound under irradiation of linearly polarized UV light, Polymer, 2002, vol. 43, no. 3, pp. 703–710. doi 10.1016/S0032-3861(01)00643-7
  104. Lee, B.H., Kim, J.H., Cho, M.J., Lee, S.H., and Choi, D.H., Photochromic behavior of spiropyran in the photoreactive polymer containing chalcone moieties, Dyes Pigm., 2004, vol. 61, no. 3, pp. 235–242. doi 10.1016/j.dyepig.2003.10.013
  105. Rehab, A. and Salahuddin, N., Photocrosslinked polymers based on pendant extended chalcone as photoreactive moieties, Polymer, 1999, vol. 40, no. 9, pp. 2197–2207. doi 10.1016/S0032-3861(98)00460-1
  106. Brédas, J.L., Silbey, R., Boudreaux, D.S., and Chance, R.R., Chain-length dependence of electronic and electrochemical properties of conjugated systems: Polyacetylene, polyphenylene, polythiophene, and polypyrrole, J. Am. Chem. Soc., 1983, vol. 105, pp. 6555–6559. doi 10.1021/ja00360a004