Solid-State Synthesis of SnO2–Zn2SnO4 Nanocomposite and Its Application for Electrochemical Detection of Cabergoline as Dopamine Receptor Antagonists

 Masoumeh Taei Masoumeh Taei ,  Masoud Fouladgar Masoud Fouladgar
Российский электрохимический журнал
Abstract / Full Text

In the present work, the synthesis of SnO2–Zn2SnO4 nanocomposite was fulfilled according to solid-state technique followed by calcination. The SnO2–Zn2SnO4 nanocomposites were specified by X-ray diffraction and scanning electron microscopy. Then, oxidation response of cabergoline (Cab) was investigated on the surface of SnO2–Zn2SnO4 modified carbon paste electrode (SnO2–Zn2SnO4/CPE), exhibiting a well-defined single oxidation peak at +0.84 V vs. Ag/AgCl, NaCl (3 M) in an irreversible process. In oxidation reaction of Cab, equal number of protons and electrons are participated and the oxidation reaction rate is controlled by an adsorption step. The calibration curve from differential pulse voltammetry showed linearity in the concentration range of 3.0 to 155.0 µM (R2 = 0.9936) and detection limit was calculated to be 0.01 µM. The analysis results certified that SnO2–Zn2SnO4/CPE possess considerable potential to detect Cab in biological fluids.

Author information
  • Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran

    Masoumeh Taei

  • Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

    Masoud Fouladgar

  1. Chiba, S., Numakawa, T., Ninomiya, M., Yoon, H.S., and Kunugi, H., Cabergoline, a dopamine receptor agonist, has an antidepressant-like property and enhances brain-derived neurotrophic factor signaling, Psychopharmacology, 2010, vol. 211, p. 291.
  2. Pontikides, N., Krassas, G., Nikopoulou, E., and Kaltsas, T., Cabergoline as a first-line treatment in newly diagnosed macroprolactinomas, Pituitary, 2000, vol. 2, p. 277.
  3. Takahashi, H., Yoshida, K., Higuchi, H., Shimizu, T., Inoue, T., and Koyama, T., Addition of a dopamine agonist, cabergoline, to a serotonin-noradrenalin reuptake inhibitor, milnacipran as a therapeutic option in the treatment of refractory depression: two case reports, Clin. Neuropharmacol., 2003, vol. 26, p. 230.
  4. Önal, A., Sağırlı, O., and Şensoy, D., Selective LC determination of cabergoline in the bulk drug and in tablets: in vitro dissolution studies, Chromatographia, 2007, vol. 65, p. 561.
  5. Igarashi, K., Hotta, K., Kasuya, F., Abe, K., and Sakoda, S., Determination of cabergoline and L-dopa in human plasma using liquid chromatography-tandem mass spectrometry, J. Chromatogr. B, 2003, vol. 792, p. 55.
  6. Salman, D., Dogan, A., and Basci, N.E., Spectrophotometric analysis of cabergoline in pharmaceutical preparations, Lat. Am. J. Pharm., 2011, vol. 30, p. 304.
  7. Pianezzola, E., Bellotti, V., La Croix, R., and Benedetti, M.S., Determination of cabergoline in plasma and urine by high-performance liquid chromatography with electrochemical detection, J. Chromatogr. B, 1992, vol. 574, p. 170.
  8. Tajik, S., Taher, M.A., and Beitollahi, H., First report for electrochemical determination of levodopa and cabergoline: application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations, Electroanalysis, 2014, vol. 26, p. 796.
  9. Jain, R. and Sinha, A., A graphene based sensor for sensitive voltammetric quantification of cabergoline, J. Electrochem. Soc., 2014, vol. 161, p. H314.
  10. Fathi, S., Omrani, S.G., and Zamani, S., Simple and low-cost electrochemical sensor based on nickel nanoparticles for the determination of cabergoline, J. Anal. Chem., 2016, vol. 71, p. 269.
  11. Ensafi, A.A., Taei, M., Khayamian, T., and Hasanpour, F., Simultaneous voltammetric determination of enrofloxacin and ciprofloxacin in urine and plasma using multiwall carbon nanotubes modified glassy carbon electrode by least-squares support vector machines, Anal. Sci., 2010, vol. 26, p. 803.
  12. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2‑(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl- hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.
  13. Fouladgar, M., CuO–CNT nanocomposite/ionic liquid modified sensor as new breast anticancer approach for determination of doxorubicin and 5-fluorouracil drugs, J. Electrochem. Soc., 2018, vol. 165, p. B559.
  14. Fouladgar, M. and Karimi-Maleh, H., Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa, Ionics, 2013, vol. 19, p. 1163.
  15. Negahban, S., Fouladgar, M., and Amiri, G., Improve the performance of carbon paste electrodes for determination of dobutamine using MnZnFe2O4 nanoparticles and ionic liquid, J. Taiwan Inst. Chem. Eng., 2017, vol. 78, p. 51.
  16. Fouladgar, M., A high sensitive square wave voltammetric sensor based on ZnO nanoparticle ionic liquid paste electrode for determination of benserazide in biological samples, Measurement, 2016, vol. 86, p. 141.
  17. Pournaghi-Azar, M. and Saadatirad, A., Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode, J. Electroanal. Chem., 2008, vol. 624, p. 293.
  18. Ensafi, A.A., Heydari-Bafrooei, E., and Rezaei, B., Different interaction of codeine and morphine with DNA: a concept for simultaneous determination, Biosens. Bioelectron., 2013, vol. 41, p. 627.
  19. Firooz, A.A., Mahjoub, A.R., and Khodadadi, A.A., Effects of flower-like, sheet-like and granular SnO2 nanostructures prepared by solid-state reactions on CO sensing, Mater. Chem. Phys., 2009, vol. 115, p. 196.
  20. Ensafi, A.A., Arashpour, B., Rezaei, B., and Allafchian, A.R., Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe2O4 magnetic nanoparticles decorated with multiwall carbon nanotubes, Mater. Sci. Eng. C, 2014, vol. 39, p. 78.
  21. Ayeshamariam, A., Ramalingam, S., Bououdina, M., and Jayachandran, M., Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV–Visible and NMR) analysis using HF and DFT calculations, Spectrochim. Acta A, 2014, vol. 118, p. 1135.
  22. Taei, M., Hasanpour, F., Hajhashemi, V., Movahedi, M., and Baghlani, H., Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2–Zn2SnO4 nanocomposites paste electrode, Appl. Surf. Sci., 2016, vol. 363, p. 490.
  23. Lu, Z. and Tang, Y., Two-step synthesis and ethanol sensing properties of Zn2SnO4SnO2 nanocomposites, Mater. Chem. Phys., 2005, vol. 92, p. 5.
  24. Fouladgar, M. and Mohammadzadeh, S., Determination of methimazole on a multiwall carbon nanotube titanium dioxide nanoparticle paste electrode, Anal. Lett., 2014, vol. 47, p. 763.
  25. Moon, W.J., Yu, J.H., and Choi, G.M., Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor, Sens. Actuators B, 2001, vol. 80, p. 21.
  26. Hasanpour, F., Taei, M., Banitaba, S., and Heidari, M., Template synthesis of maghemite nanoparticle in carboxymethyl cellulose and its application for electrochemical cabergoline sensing, Mater. Sci. Eng. C, 2017, vol. 76, p. 88.
  27. Del Dotto, P. and Bonuccelli, U., Clinical pharmacokinetics of cabergoline, Clin. Pharmacokinet., 2003, vol. 42, p. 633.