Статья
2017

Composite electrodes for proton conducting electrolyte of CaZr0.95Sc0.05O3 – δ


E. Yu. Pikalova E. Yu. Pikalova , N. M. Bogdanovich N. M. Bogdanovich , A. V. Kuz’min A. V. Kuz’min
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517070096
Abstract / Full Text

A new method of obtaining gastight ceramic based on CaZr0.95Sc0.05O3 – δ is presented. The microstructure and electric properties of the obtained samples, same as the behavior of composite electrodes in contact with this electrolyte, are studied for application of the obtained results in the technology of formation of electrochemical devices. The design of bilayer electrodes is suggested, in which the materials tested as the functional layer were layered lanthanum nickelate La2NiO4 + δ and substituted lanthanum nickelate La1.7Ca(Sr,Ba)0.3NiO4 + δ in combination with the electrolyte components of Ce0.8Sm0.2O2 – δ and BaCe0.89Gd0.1Cu0.01O3 – δ. The collector layer used was lanthanum nickelate–ferrite LaNi0.6Fe0.4O3 – δ and manganite La0.6Sr0.4MnO3 – δ that are characterized by high electron conductivity, low layer resistance and are close by their values of coefficient of linear thermal expansion to the materials of functional layers. Electrochemical activity of the obtained electrodes are compared with the characteristics of composite electrodes based on lanthanum ferrite–cobaltite La0.6Sr0.4Fe0.8Co0.2O3 – δ and deficient lanthanum manganite La0.75Sr0.2MnO3 – δ.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russia

    E. Yu. Pikalova, N. M. Bogdanovich & A. V. Kuz’min

  • Ural Federal University, Yekaterinburg, 620002, Russia

    E. Yu. Pikalova & A. V. Kuz’min

References
  1. Kalyakin, A., Fadeev, G., Demin, A., Gorbova, E., Brouzgou, A., Volkov, A., and Tsiakaras, P., Electrochim. Acta, 2014, vol. 141, p. 120.
  2. Gorelov, V.P., Balakireva, V.B., Kuz’min, A.V., and Plaksin, S.V., Inorg. Mater., 2014, vol. 50, p. 495.
  3. Gorelov, V. P., Balakireva, V.B., and Kuz’min, A.V., Phys. Solid State, 2016, vol. 58, p. 14.
  4. Davies, R.A., Islam, M.S., and Gale, J.D., Solid State Ionics, 1999, vol. 126, p. 323.
  5. Tsidilkovski, V.I., Solid State Ionics, 2003, vols. 162–163, p. 47.
  6. Matsumoto, H., Hayashi, H., Shimura, T., Iwahara, H., and Yogo, T., Solid State Ionics, 2003, vol. 161, p. 93.
  7. Tolchard, J. and Grande, T., J. Solid State Chem., 2007, vol. 180, p. 2808.
  8. Dailly, J., Fourcade, S., Largeteau, A., Mauvy, F., Grenier, J.C., and Marrony, M., Electrochim. Acta, 2010, vol. 55, p. 5847.
  9. Hou, J., Zhu, Zh., Qian, J., and Liu, W., J. Power Sources, 2014, vol. 264, p. 67.
  10. Upasen, S., Batocchi, P., Mauvy, F., Slodczyk, A., and Colomban, Ph., J. Alloys Compd., 2015, vol. 622, p. 1074.
  11. Boehm, E., Bassat, J.-M., Dordor, P., Mauvy, F., Grenier, J.C., and Stevens, Ph., Solid State Ionics, 2005, vol. 176, p. 2717.
  12. Tang, J.P., Dass, R.I., and Manthiram, A., Mater. Res. Bull., 2000, vol. 35, p. 411.
  13. Pikalova, E.Yu., Bogdanovich, N.M., Kolchugin, A.A., Osinkin, D.A., and Bronin, D.I., Procedia Eng., 2014, vol. 98, p. 105.
  14. Pikalova, E.Yu., Bogdanovich, N.M., Kolchugin, A.A., Brouzgou, A., Bronin, D.I., Plaksin, S.V., Khasanov, A.F., and Tsiakaras, P., ECS Trans., 2015, vol. 68, p. 809.
  15. Shen, Y., Zhao, H., Liu, X., and Xu, N., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15124.
  16. Bogdanovich, N.M., Bronin, D.I., Vdovin, G.K., Yaroslavtsev, I.Yu., and Kuzin, B.L, Russ. J. Electrochem., 2009, vol. 45, p. 456.
  17. Kuzin, B.L., Bogdanovich, N.M., Bronin, D.I., Yaroslavtsev, I.Yu., Vdovin, G.K., Kotov, Yu.A., Bagazeev, A.V., Medvedev, A.I., Murzakaev, A.M., Timoshenkova, O.P., and Stol’ts, A.K., Russ. J. Electrochem., 2007, vol. 43, p. 920.
  18. Neuimin, A.D., Fedin, V.V., Zhuravlev, B.V., Kozhevnikova, B.V., Bogdanovich, N.M., Khomyakova, N.G., and Maizner, E.A., RF Patent no. 1825575 (2003).
  19. Zhao, F., Jin, C., Yang, C., Wan, S., and Chen, F., J. Power Sources, 2011, vol. 196, p. 688.
  20. Bogdanovich, N.M., Gorelov, V.P., Balakireva, V.B., and Dem’yanenko, T.A., Russ. J. Electrochem., 2005, vol. 41, p. 576.
  21. Yaroslavtsev, I.Yu., Kuzin, B.L., Bronin, D.I., Vdovin, G.K., and Bogdanovich, N.M., Russ. J. Elecrochem., 2009, vol. 45, p. 875.
  22. Bogdanovich, N.M., Kuzin, B.L., Bronin, D.I., Dem’yanenko, T.A., Yaroslavtsev, I.Yu., Kotov, Yu.A., Murzakaev, A.M., and Bagazeev, A.V., RF Patent no. 2322730 (2008).
  23. Li, S., Yan, R., Wu, G., Xie, K., and Cheng, J., Int. J. Hydrogen Energy, 2013, vol. 38, p. 14943.
  24. Yajima, T., Kazeoka, H., Yogo, T., and Iwahara, H., Solid State Ionics, 1991, vol. 47, p. 271.
  25. Kolchugin, A., Pikalova, E.Yu., Bogdanovich, N.M., Bronin, D.I., Pikalov, S.M., Plaksin, S.V., Ananyev, M.V., and Eremin, V.A., Solid State Ionics, 2016, vol. 288, p. 48.
  26. Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., and Bronin, D.I., Russ. J. Electrochem., 2015, vol. 51, p. 483.
  27. Ling, Y., Yu, J., Iin, B., Zhang, X., Zhao, L., and Liu, X., J. Power Sources, 2011, vol. 196, p. 2631.
  28. Chen, Y., Gu, Q., Tian, D., Ding, Y., Lu, X., Yu, W., Isimjan, T.T., and Lin, B., Int. J. Hydrogen Energy, 2014, vol. 39, p. 13665.
  29. Hou, J., Zho, Zh., Qian, J., and Liu, W., J. Power Sources, 2014, vol. 264, p. 67.
  30. Poetzsch, D., Merkle, R., and Maier, J., J. Electrochem. Soc., 2015, vol. 162, p. F939.
  31. Lyagaeva, J., Medvedev, D., Pikalova, E., Plaksin, S., Brouzgou, A., Demin, A., and Tsiakaras, P., Int. J. Hydrogen Energy, 2016, vol. 41. doi 10.1016/j.ijhydene.2016.07.248