Статья
2016

Nature of ionic conductivity of lanthanide tungstates with imperfect scheelite structure


N. N. Pestereva N. N. Pestereva , I. A. Vyatkin I. A. Vyatkin , D. A. Lopatin D. A. Lopatin , A. F. Guseva A. F. Guseva
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516110094
Abstract / Full Text

Electric properties of tungstates with imperfect scheelite structure, Ln2(WO4)3 (Ln = La, Sm, Eu), are studied; the charge carrier type is determined in these phases. It is found that the conductivity type of Ln2(WO4)3 is predominantly ionic, though there is a contribution of n-type electron conductivity component in the case of Eu2(WO4)3. The Tubandt method was used to establish a negligible contribution of the [WO4]2– anion into transport, which, together with the results of the EMF technique, points to the predominantly oxygen character of conductivity.

Author information
  • Ural Federal University Named after the First President of Russia B.N. Yel’tsin, Yekaterinburg, 620002, Russia

    N. N. Pestereva, I. A. Vyatkin, D. A. Lopatin & A. F. Guseva

References
  1. Gurvich, A.M., Rentgenolyuminofory i rentgenovskie ekrany (X-ray Phosphors and X-Ray Screens), Moscow: Atomizdat, 1976.
  2. Kaminskii, A.A., Lazernye kristally (Laser crystals), Moscow: Nauka, 1975.
  3. Dem’yanets, L.N., Ilyukhin, V.V., Chichagov, A.V., and Belov, N.V., Izv. Akad. Nauk SSSR, Neorg. Mater., 1967, no. 3, p. 2221.
  4. Evans, J.S.O, Mary, T.A., and Sleight, A.W., J. Solid State Chem., 1998, vol. 137, p. 148.
  5. Kobayashi, Y. and Tamura, S., Bull. Chem. Soc. Jpn., 2011, vol. 84, p. 353.
  6. Imanaka, N., Kobayashi, Y., Tamura, S., and Adachi, G., Solid State Ionics, 2000, vol. 136–137, p. 319.
  7. Imanaka, N., Ueda, T., Okazaki, Yu., Tamura, S., and Adachi, G., Chem. Mater., 2000, vol. 12, p. 1910.
  8. Zhou, Y., Adams, S., Rao, R.P., Edwards, D.D., Neiman, A., and Pestereva, N., Chem. Mater., 2008, vol. 20, p. 6335.
  9. Zhou, K., Rao, P., and Adams, S., Chem. Mon., 2009, vol. 140, p. 1017.
  10. Zhou, Y., Rao, P., and Adams, S., Solid State Ionics, 2011, vol. 192, p. 34.
  11. Neiman, A.Ya., Pestereva, N.N., Zhou, Y., Nechaev, D.O., Koteneva, E.A., Vanec, K., Higgins, B., Volkova, N.A., and Korchuganova, I.G., Russ. J. Electrochem., 2013, vol. 49, p. 895.
  12. Grigor’eva, L.F., in Diagrammy sostoyania sistem tugoplavkikh oksidov: Spravochnik, Vypusk 5, Dvoinye sistemy (State Diagrams of Refractory Oxide Systems: Reference Book, Issue 5, Double systems), Leningrad: Nauka, 1989, Part 4, p. 284.
  13. Evdokimov, A.A., Efremov, V.A., Trunov, V.K., Kleinman, I.A., and Dzhurinskii, B.F., Soedineniya redkozemel’nykh metallov. Molibdaty, Volframaty (Compounds of Rare–Earth Elements. Molybdates, Tungstates), Moscow: Nauka, 1991, pp. 51–58.
  14. Shannon, R.D., Acta Crystallogr., Sect. A, 1976, vol. 32, p. 751.
  15. Yoshimura, M. and Rouanet, A., Mater. Res. Bull., 1976, vol. 11, p. 151.
  16. Rode, E.A., Balagina, G.M., Ovanova, M.M., and Karpov, V.N., Zh. Neorg. Khim., 1968, vol. 13, p. 1451.
  17. Yanovskii, V.K. and Voronkova, V.I., Izv. Akad. Nauk SSSR, Neorg. Mater., 1983, vol. 19, p. 416.
  18. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Evaporation of Oxides), Moscow: Nauka, 1997.