Examples



mdbootstrap.com



 
Статья
2021

Modifying Copper and Copper Alloy Surface with Depocolin and 5-Chloro-1,2,3-Benzotriazole from a Neutral Aqueous Solution


M. O. AgafonkinaM. O. Agafonkina, O. Yu. GrafovO. Yu. Grafov, N. P. AndreevaN. P. Andreeva, L. P. KazanskiiL. P. Kazanskii, Yu. I. KuznetsovYu. I. Kuznetsov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421110029
Abstract / Full Text

Results are presented from adsorption and electrochemical investigations of a 3,7,12,17-tetramethyl-8,13-divinyl-2,18-deuteroporphyrin IX (depocolin) salt on a CuNiFe (MNZh) 5-1 alloy. It is established that modifying surfaces of copper and CuNiFe 5-1 alloy with depocolin and the subsequent adsorption of 5-chloro-1,2,3-benzotriazole considerably enhances the protective effect, which is higher than those of each compound taken separately. XPS and reflection ellipsometry reveal the chemisorptive character of interaction between depocolin and the alloy’s surface. It is shown that bonding between the inhibitor and the copper or alloy surface proceeds through carboxyl groups of depocolin, while the porphyrin cycle does not participate in this interaction.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, RussiaM. O. Agafonkina, O. Yu. Grafov, N. P. Andreeva, L. P. Kazanskii & Yu. I. Kuznetsov
References
  1. Yu. I. Kuznetsov and L. P. Kazansky, Russ. Chem. Rev. 77, 219 (2008).https://doi.org/10.1070/RC2008v077n03ABEH003753
  2. M. Finšgar and I. Milošev, Corros. Sci. 52, 2737 (2010). https://doi.org/10.1016/j.corsci.2010.05.002
  3. M. Antonijević Milan, M. Milić Snežana, and B. Petrović Marija, Corros. Sci. 51, 1228 (2009). https://doi.org/10.1016/j.corsci.2009.03.026
  4. Y. Rio, M. S. Rodríguez-Morgade, and T. Torres, Org. Biomol. Chem. 6, 1877 (2008). https://doi.org/10.1002/chin.200836268
  5. M. V. Martínez-Díaz, G. de la Torre, and T. Torres, Chem. Commun. 46, 7090 (2010). https://doi.org/10.1039/c0cc02213f
  6. G. Bottari, O. Trukhina, M. Ince, and T. Torres, Coord. Chem. Rev. 256, 2453 (2012). https://doi.org/10.1016/j.ccr.2012.03.011
  7. N. P. Andreeva, A. V. Larionov, O. Yu. Grafov, et al., Korroz.: Mater., Zashch., No. 10, 22 (2016). N. P. Andreeva, A. V. Larionov, O. Yu. Grafov, et al., Prot. Met. Phys. Chem. Surf. 54, 1276 (2018). https://doi.org/10.1134/S2070205118070031
  8. I. V. Aoki, I. C. Guedes, and S. L. A. Maranhao, J. Appl. Electrochem. 32, 915 (2002). https://doi.org/10.1023/A:1020506432003
  9. S. Lokesh Koodlur, M. de Keersmaecker, A. Elia, et al., Corros. Sci. 62, 73 (2012). https://doi.org/10.1016/j.corsci.2012.04.037
  10. J. C. Valle-Quitana, G. F. Dominguez-Patiño, and J. G. Gonzalez-Rodriguez, Corrosion 2014, 945645 (2014).
  11. Y. Feng, S. Chen, W. Guo, et al., J. Electroanal. Chem. 602, 115 (2007). https://doi.org/10.1016/j.jelechem.2006.12.016
  12. A. Singh, Y. Lin, M. A. Quraishi, et al., Molecules 20, 15122 (2015). https://doi.org/10.3390/modules200815122
  13. J. Hu, D. Huang, G. Zhang, et al., Corros. Sci. 63, 367 (2012). https://doi.org/10.1149/2.021206esl
  14. Yu. I. Kuznetsov, M. O. Agafonkina, N. P. Andreeva, and L. P. Kazansky, Corros. Sci. 100, 535 (2015). https://doi.org/10.1016/j.corsci.2015.08.028
  15. O. Yu. Grafov, L. P. Kazansky, S. V. Dubinskaya, and Yu. I. Kuznetsov, Int. J. Corros. Scale Inhib. 8, 549 (2019). https://doi.org/10.17675/2305-6894-2019-8-3-6
  16. R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  17. M. O. Agafonkina, N. P. Andreeva, Yu. I. Kuznetsov, and S. F. Timashev, Russ. J. Phys. Chem. A 91, 1414 (2017). https://doi.org/10.7868/S0044453717080027
  18. D. A. Shirley, Phys. Rev. B 5, 4709 (1972). https://doi.org/10.1103/Phys.Rev.B.72.245319
  19. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).
  20. M. Mohai, Surf. Interface Anal. 36, 828 (2004). https://doi.org/10.1002/sia.1775
  21. P. J. Cumpson and M. P. Seah, Surf. Interface Anal. 25, 430 (1997). https://doi.org/10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7
  22. C. Battistoni, G. Mattogno, E. Paparazzo, and L. Naldini, Inorg. Chim. Acta 102, 1 (1985). https://doi.org/10.1016/S0020-1693(00)89066-0
  23. C. E. Dube, B. Workie, S. P. Kounaves, A. Robbat, et al., J. Electrochem. Soc. 142, 3357 (1995).
  24. N. S. McIntyre and M. G. Cook, Anal. Chem. 47, 2208 (1975). https://doi.org/10.1021/ac60363a034
  25. N. S. McIntyre and D. G. Zetaruk, Anal. Chem. 49, 1521 (1977). https://doi.org/10.1021/ac50019a016
  26. D. D. Hawn and B. M. de Koven, Surf. Interface Anal. 10, 63 (1987). https://doi.org/10.1002/sia.740100203
  27. K. Lian, D. W. Kirk, and S. J. Thorpe, Electrochim. Acta 37, 2029 (1992). https://doi.org/10.1016/0013-4686(92)87119-K
  28. E. Khawaja, M. Salim, M. Khan, et al., J. Non-Cryst. Solids 110, 33 (1989). https://doi.org/10.1016/0022-3093(89)90179-8
  29. C. L. Bianchi, M. G. Cattania, and P. Villa, Appl. Surf. Sci. 70, 211 (1993). https://doi.org/10.1016/0169-4332(93)90429-F
  30. T. Dickinson, A. F. Povey, and P. M. A. Sherwood, J. Chem. Soc. Faraday Trans. 1, No. 73, 327 (1977). https://doi.org/10.1039/F19777300327