Electrochemical Synthesis of Fe–Cu Composites Based on Copper(II) Ferrite and Their Electrocatalytic Properties

N. M. Ivanova N. M. Ivanova , E. A. Soboleva E. A. Soboleva , Ya. A. Visurkhanova Ya. A. Visurkhanova , Z. Muldakhmetov Z. Muldakhmetov
Российский электрохимический журнал
Abstract / Full Text

Copper(II) ferrite is synthesized by the co-precipitation method in the absence and in the presence of polyvinyl alcohol which is followed by thermally treatment at 300, 500, 700, and 900°С. The specific surface area of thus prepared samples is determined. X-ray diffraction data point to the partial thermal reduction of CuFe2O4 + polymer samples. CuFe2O4 samples synthesized in the absence of polymer are reduced in the electrochemical system to form Fe–Cu composites with the different content of reduced metals depend on the temperature of thermal treatment. Electronic spectroscopy studies of samples reduced electrochemically reveal the presence of crystallites shaped as hexagonal prisms presumably formed by copper and iron-copper layers and covered by reduced iron and its oxide Fe3O4. The experiments show that the thus synthesized Fe–Cu composites exhibit electrocatalytic activity in electrochemical hydrogenation of acetophenone: its hydrogenation rate is higher by a factor of 2.5–6.4 as compared with its electrochemical reduction.

Author information
  • Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 100008, Karaganda, Kazakhstan

    N. M. Ivanova, E. A. Soboleva, Ya. A. Visurkhanova & Z. Muldakhmetov

  1. Kharisov, B.I., Dias, H.V.R., and Kharisova, O.V., Mini-review: Ferrite nanoparticles in the catalysis, Arabian J. Chem., 2014. https://doi.org/10.1016/j.arabjc.2014.10.049
  2. Zhuang, Y.-T., Gao, W., Yu, Y.-L., and Wang, J.-H., Facile fabrication of three-dimensional porous CuFe2O4 cages as highly efficient and recyclable heterogeneous catalyst, Mater. Des., 2017, vol. 130, p. 302.
  3. Bomio, M., Lavela, P., and Tirado, J.L., Electrochemical evaluation of CuFe2O4 samples obtained by sol–gel methods used as anodes in lithium batteries, J. Solid State Electrochem., 2008, vol. 12, p. 729.
  4. Karim, K.M.R., Ong, H.R., Abdullah, H., Yousuf, A., Cheng, C.K., and Khan, M.K.R., Electrochemical study of copper ferrite as a catalyst for CO2 photoelectrochemical reduction, Bull. Chem. React. Eng. Catal., 2018, vol. 13(2), p. 236.
  5. Hasanpour, F., Taei, M., and Fouladgar, M., A voltammetric sensor based on spinel-structured copper ferrite nanoparticles multiwalled carbon nanotubes modified carbon paste electrode for determination of dacarbazine, Russ. J. Electrochem., 2018, vol. 54, p. 70.
  6. Li, M., Xiong, Y., Liu, X., Bo, X., Zhang, Y., Han, C., and Guo, L., Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction, Nanoscale, 2015, vol. 7, p. 8920.
  7. Birhanu, M.K., Tsai, M.-C., Kahsay, A.W., Chen, C.-T., Zeleke, T.S., Ibrahim, K.B., Huang, C.-J., Su, W.-N., and Hwang, B.-J., Copper and copper-based bimetallic catalysts for carbon dioxide electroreduction, Adv. Mater. Interfaces, 2018, 1800919. https://doi.org/10.1002/admi.201800919
  8. Khedr, M.H., Farghali, A.A., and Abdel-Khalek, A.A., Microstructure, kinetics and mechanisms of nano-crystalline CuFe2O4 reduction in flowing hydrogen at 300–600°C for the production of metallic nano-wires, J. Anal. Appl. Pyrolysis, 2007, vol. 78, p. 1.
  9. Shin, H.-Ch., Choi, S.-Ch., Jung, K.-D., and Han, S.-H., Mechanism of M-ferrites (M = Cu and Ni) in the CO2 decomposition, Chem. Mater., 2001, vol.13, p. 1238.
  10. Yang, Sh.-Ch., Su, W.-N., Lin, Sh. D., Rick, J., and Cheng, J.-H. et al., Preparation of nano-sized Cu from a rod-like CuFe2O4: Suitable for high performance catalytic applications, Appl. Catal., B, 2011, vol. 106, p. 650.
  11. Kameoka, S., Tanabe, T., and Tsai, A.P., Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4, Appl. Catal., A, 2010, vol. 375, p. 163.
  12. Lin, X., Zhang, Y., Yin, L., Chen, Ch., and Li, D., Characterization and catalytic performance of copper-based WGS catalysts derived from copper ferrite, Int. J. Hydrogen Energy, 2014, vol. 39, p. 6424.
  13. Jiaowen, S., Kim, D.W., Kim, S.B., and Jo, Y.M., CO2 decomposition using metal ferrites prepared by co-precipitation method, Korean J. Chem. Eng., 2016, vol. 33, p. 3162.
  14. Shin, H.-Ch., Jung, K.-D., Han, S.-H., and Kim, J.W., Decomposition of H2O with M-Ferrite (M = Cu and Ni) for H2 generation, J. Ceram. Process. Res., 2003, vol. 4, p. 30.
  15. Ivanova, N.M., Soboleva, E.A., Visurkhanova, Ya.A., and Kirilyus, I.V., Electrocatalytic activity of polyaniline-copper composites in electrohydrogenation of p‑nitroaniline, Russ. J. Electrochem., 2015, vol. 51, p. 166.
  16. Ivanova, N.M., Visurkhanova, Ya.A., Soboleva, E.A., and Kenzhetaeva, S.O., Two-step fabrication of iron-containing polyaniline composites for electrocatalytic hydrogenation of nitroarenes, Electrochem. Comm., 2018, vol. 9, p. 66.
  17. Ivanova, N.M., Soboleva, E.A., Visurkhanova, Ya.A., and Lazareva, E.S., Structure-phase changes in polymer composites doped with silver nitrate and their electrocatalytic activity, Russ. J. Electrochem., 2018, vol. 54, p. 999.
  18. Kheifitz, L.A. and Dashunin, V.M., Dushistye veshchestva i drugie produkty dlya parfyumerii (Aroma Compounds and Other Products for Perfumery), Moscow: Khimiya, 1994.
  19. Vasil’ev, V.P., Morozova, R.P., and Kochergina, L.A., Praktikum po analiticheskoi khimii (Practicum on analytical chemistry), Moscow: Khimiya, 2000.
  20. Agouriane, E., Rabi, B., Essoumhi, A., Razouk, A., Sahlaoui, M., Costa, B.F.O., and Sajieddine, M., Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by co-precipitation, J. Mater. Environ. Sci., 2016, vol. 7, p. 4116.
  21. Soboleva, E.A., Bekenova, U.B., Kirilyus, I.V., Ivanova, N.M., Tusupbekova, G.K., and Zakarin, S.Z., Prepatent 19050 (Kazakhstan), 2008.