Examples



mdbootstrap.com



 
Статья
2020

New Structural Modifications of Cotarnine Alkaloid Derivatives: Cotarnone and Dihydrocotarnine


V. G. KartsevV. G. Kartsev, A. A. ZubenkoA. A. Zubenko, L. N. DivaevaL. N. Divaeva, A. S. MorkovnikA. S. Morkovnik, T. K. BaryshnikovaT. K. Baryshnikova, V. Z. ShirinianV. Z. Shirinian
Российский журнал общей химии
https://doi.org/10.1134/S1070363220020127
Abstract / Full Text

Simplest derivatives of the cotarnine alkaloid, like cotarnone and 1,2-dihydrocotarnine, undergo electrophilic Einhorn acylamidomethylation (with 60–95% yield) and sulfochlorination with chlorosulfonic acid at position 5. At the same time cotarnone and its derivatives undergo additional O-protodemethylation. Using these and some other reactions, we synthesized a number of previously unknown derivatives of two substrates with 5-chloroacetamidomethyl, 5-arylaminomethyl, 5-aminomethyl and 5-sulfamide groups.

Author information
  • InterBioScreen Ltd, 142432, Chernogolovka, RussiaV. G. Kartsev
  • North Caucasian Zonal Veterinary Research Institute, Federal Rostov Agrarian Scientific Center, 346406, Novocherkassk, RussiaA. A. Zubenko
  • Institute of Physical and Organic Chemistry of Southern Federal University, 344090, Rostov-on-Don, RussiaL. N. Divaeva & A. S. Morkovnik
  • N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, 119991, Moscow, RussiaT. K. Baryshnikova & V. Z. Shirinian
References
  1. Kartsev, V.G., Zubenko, A.A., Morkovnik, A.S., and Divaeva, L.N., Tetrahedron Lett., 2015, vol. 56, p. 6988. https://doi.org/10.1016/j.tetlet.2015.10.103
  2. Beke, D., Adv. Heterocycl. Chem., 1963, vol. 1, p. 167. https://doi.org/10.1016/S0065-2725(08)60525-5
  3. Choudhury, S.K., Rout, P., Parida, B.B., Florent, J-C., Johannes, L., Phaomei, G., Bertounesque, E., and Rout, L., Eur. J. Org. Chem., 2017, p. 5275. https://doi.org/10.1002/ejoc.201700471
  4. Khrustalev, V.N., Krasnov, K.A., and Timofeeva, T.V., J. Mol. Struct., 2008, vol. 878, p. 40. https://doi.org/10.1016/j.molstruc.2007.07.036
  5. Shvartsberg, M.S., Vasilevskii, S.F., Kostrovskii, V.G., and Kotlyareskii, I.L., Chem. Heterocycl. Comp., 1972, vol. 5, p. 797. doi.10.1007/BF00475858
  6. Ukhin, L.Yu, Gol’ding, I.R., and Kartsev, V.G., Chem. Nat. Compd., 2004, vol. 40, p. 156. https://doi.org/10.1023/B:CONC.0000033934.74690.21
  7. Hope, E. and Robinson, R., J. Chem. Soc. Trans., 1911, vol. 99, p. 2114. https://doi.org/10.1039/CT9119902114
  8. Maslennikova, G.N. and Lazurevskii, G.V., Doklady Akad. Nauk SSSR, 1950, vol. 72, p. 305.
  9. Maslennikova, G.N. and Lazurevskii, G.V., Doklady Akad. Nauk SSSR, 1951, vol. 73, p. 1604.
  10. Krasnov, K.A., Kartsev, V.G., and Vasilevskii, S.F., Chem. Nat. Comрd., 2005, vol. 41, p. 446. https://doi.org/10.1007/s10600-005-0174-z
  11. Mohrle, H. and Grimm, B., Arch. Pharm., 1986, vol. 319, p. 835. https://doi.org/10.1002/ardp.19863191110
  12. Krasnov, K.A. and Kartsev, V.G., Russ. J. Org. Chem., 2002, vol. 38, p. 457. https://doi.org/10.1023/A:1016354730304
  13. Schneider, W. and Mueller, B., Lieb. Ann., 1958, vol. 615, p. 34. https://doi.org/10.1002/jlac.19586150106
  14. Krasnov, K.A., Kartsev, V.G., and Khrustalev, V.N., Chem. Nat. Comp., 2008, vol. 44, p. 48. https://doi.org/10.1007/s10600-008-0013-0
  15. Min, C., Sanchawala, A., and Seidel, D., Org. Lett., 2014, vol. 16, p. 2756. https://doi.org/10.1021/ol501073f
  16. Bergonzini, G., Schindler, C.S., Wallentin, C.-J., Jacobsen, E.N., and Stephenson, C.R.J., Chem. Sci., 2014, vol. 5, p. 112. https://doi.org/10.1039/C3SC52265B
  17. Wang, T., Schrempp, M., Berndhäuser, A., Schiemann, O., and Menche, D., Org. Lett., 2015, vol. 17, p. 3982. https://doi.org/10.1039/10.1021/acs.orglett.5b01845
  18. Burks, H.E., Karki, R.G., Kirby, C.A., Nunez, J., Peukert, S., Springer, C., Sun, Y., and Thomsen, N.M.-F., WO Patent, 2015/92634 A1, 2015.
  19. Mahmoudian, M. and Rahimi-Moghaddam, P., Recent Pat. Anti-Cancer Drug Disc., 2009, vol. 4, p. 92. https://doi.org/10.1039/10.2174/157489209787002524
  20. Krasnov, K.A., Kartsev, V.G., and Yurova, M.N., Chem. Nat. Comp., 2001, vol. 37, p. 543. https://doi.org/10.1023/A:1014821016904
  21. Krasnov, K.A., Kartsev, V.G., and Khrustalev, V.N., Heterocycles, 2007, vol. 71, p. 13. https://doi.org/10.3987/COM-06-10854
  22. Krasnov, K.A., Kartsev, V.G., and Khrustalev, V.N., Russ. Chem. Bull., 2002, vol. 51, p. 1540. https://doi.org/10.1023/A:1020983527851
  23. Khrustalev, V.N., Krasnov, K.A., and Timofeeva, T.V., J. Mol. Struct., 2008, vol. 878, p. 40. https://doi.org/10.1016/j.molstruc.2007.07.036
  24. Wang, H.-Y. and Burns, B.L., WO Patent 2015/54027 A1, 2015.
  25. Burns, B.L., Wang, H.-Y., Lin, N.-H., and Blasko, A., WO Patent 2010051476 A1, 2009.
  26. Zubenko, A.A., Kartsev, V.G., Morkovnik, A.S., Divaeva, L.N., and Suponitsky, K.Yu., Chem. Select., 2016, vol. 1, p. 2560. https://doi.org/10.1002/slct.201600727
  27. Zubenko, A.A., Divaeva, L.N., Morkovnik, A.S., Kartsev, V.G., Drobin, Y.D., Serbinovskaya, N.M., Fetisov, L.N., Bodryakov, A.N., Bodryakova, M.A., and Lyashenko, L.A., Russ. J. Bioorg. Chem., 2017, vol. 43, p. 311. https://doi.org/10.1134/S1068162017030189
  28. Zubenko, A.A., Kartsev, V.G., Morkovnik, A.S., Divaeva, L.N., Alexeenko, D.V., Borodkin, G.S., Suponitsky, K.Y., and Klimenko, A.I., Tetrahedron Lett., 2017, vol. 58, p. 1233. https://doi.org/10.1016/j.tetlet.2017.02.036
  29. Bernhard, H.O. and Snieckus, V., Tetrahedron, 1971, vol. 27, p. 2091. https://doi.org/10.1016/S0040-4020(01)91607-2
  30. Janssen, R.H.A.M., Wijkens, P., Krijk, C., Biessels, H.W.A., Menichinis, F., and Theuns, H.G., Phytochem., 1990, vol. 29, p. 3331. https://doi.org/10.1016/0031-9422(90)80210-8
  31. Semonsky, M., Coll. Czech. Chem. Commun., 1951, vol. 15, p. 1024. https://doi.org/10.1135/cccc19501024