Examples



mdbootstrap.com



 
Статья
2017

Regularities of oxygen and water thermal desorption from barium cerate doped by neodymium, samarium, and gadolinium


I. V. KhromushinI. V. Khromushin, T. I. AksenovaT. I. Aksenova, Yu. M. BaikovYu. M. Baikov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517060088
Abstract / Full Text

Processes of thermal desorption of oxygen molecules and water from BaCe1–x M x O3–δ, where M= Nd, Sm, and Gd, presintered in air at the temperature of 650°C are studied. It is found that oxygen is desorbed only from neodymium–doped barium cerate and is almost not evolved from barium cerate doped by samarium and gadolinium. The amount of desorbed oxygen features a square dependence on cationic doping by neodymium. At similar degrees of cationic doping, the amount of water desorbed from neodymium–doped barium cerate is always lower than that from the cerate doped by samarium and gadolinium. The obtained experimental data on thermal desorption and analysis of literature data served as a basis for the conclusion as to the mixed valency of neodymium Nd(III)–Nd(IV) in BaCe1–x Nd x O3–δ. In this case, at similar doping degrees x, the hydration degree of BaCe1–x Nd x O3–δ is lower and the oxygen index is higher than in BaCe1x (Sm,Gd) x O3–δ. The differences become more pronounced at high degrees of cationic doping and must decrease at an increase in temperature.

Author information
  • Institute of Nuclear Physics, Almaty, KazakhstanI. V. Khromushin & T. I. Aksenova
  • Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, RussiaYu. M. Baikov
References
  1. Iwahara, H., Yajima, T., Hibino, T., and Ozaki, K., Solid State Ionics, 1993, vol. 61, p. 65.
  2. Kröger, F.A., The Chemistry of Imperfect Crystals, North-Holland, 1964.
  3. Bonanos, N. and Poulsen, F.W., J. Mater. Chem., 1999, vol. 9 P, pp. 431–434.
  4. Baikov, Yu.M. and Shalkova, E.K., J. Solid State Chem., 1992, vol. 97, pp. 224–227.
  5. Baikov, Yu.M., Solid State Ionics, 1997, vol. 97, pp. 471–476.
  6. Kompan, M.E., Baikov, Yu.M., Melekh, B.A., and Yakubovich, A.V., Phys. Solid State, 2002, vol. 44, pp. 1263–1267.
  7. Scherban, T., Baikov, Yu.M., and Shalkova, E.K., Solid State Chem., 1993, vol. 66, pp. 159–164.
  8. Kishio, K., Dynamics of Fast Ions in solids and Its Evolution for Solid State Ionics. Report of a Priority Area Research Program (FY 1995–1997). National Science Foundation, Tokyo Regional Office, Sept., 1998, pp. 23–26.
  9. Iwahara, H., Esauku, T., Ushida, H., and Meda, N., Solid State Ionics, 1981, vols. 3–4, pp. 359–363.
  10. Baranov, A.I., Shuvalov, L.A., and Shchagina, N.M., Pis’ma Zh. Eksp. Teor. Fiz., 1982, vol. 36, pp. 381–384.
  11. Stephen, P.M.S. and Howe, A.T., Solid State Ionics, 1980, vol. 1, pp. 461–469.
  12. Stevenson, D.A., Jiang, N., Buchanan, R.M., and Henn, F.E.G., Solid State Ionics, 1993, vols. 62–63, p. 279.
  13. Shimoyama, J., Kishio, K., Fueki, K., and Mizusaki, J., The 13th Symp. on Solid State Ionics in Japan, 1986, p. 93.
  14. Aksenova, T.I., Khromushin, I.V., Zhotabaev, Zh.R., Bukenov, K.D., Berdauletov, A.K., and Medvedeva, Z.V., Solid State Ionics, 2003, vols. 162–163, pp. 31–36.
  15. Khromushin, I.V., Aksenova, T.I., and Zhotabaev, Zh.R., Solid State Ionics, 2003, vols. 162–163, pp. 37–40.
  16. Khromushin, I.V., Aksenova, T.I., Zhotabaev, Zh.R., and Munasbaeva, K.K., Izv. Nats. Akad. Nauk Resp. Kaz., Ser. Fiz.–Mat., 2006, no. 6, pp. 72–76.
  17. Brauer, VonG. and Kristen, H., Z. Anorg. Allg. Chem., 1979, vol. 456, pp. 41–53.
  18. Oishi, M., Yashiro, K., Sato, K., Mizusaki, J., Kitamura, N., Amezawa, K., Kawada, T., and Uchimoto, Y., Solid State Ionics, 2008, vol. 179, pp. 529–535.