Examples



mdbootstrap.com



 
Статья
2020

Structure and Phase Composition of (TiB)–Ti Metal Matrix Composites Obtained by SHS and Vacuum Sintering


E. N. KorostelevaE. N. Korosteleva, V. V. KorzhovaV. V. Korzhova
Российский физический журнал
https://doi.org/10.1007/s11182-020-02159-4
Abstract / Full Text

The structure and phase composition of (TiB)–Ti powder metal matrix composites synthesized by wave combustion with subsequent vacuum sintering are studied. The selected ratio of the reacting components correspond to the presence of unreacted titanium in the combustion products. The behavior of the SHS composite powders synthesized by vacuum sintering is estimated. An analysis of the volumetric and structural changes in the synthesized powder compacts demonstrates that at sintering temperatures of 1300–1350°С, no significant structure transformation occurs, and a slight decrease in the compact volume and the residual pore content is observed. A qualitative phase composition is maintained regardless of the amount of excess titanium and the selected temperature of sintering of the metal matrix composite. The vacuum sintering condition facilitates the redistribution of proportions of phases formed in a nonequilibrium state during synthesis. After sintering, the titanium diboride phase content decreases in favor of a more stable titanium monoboride.

Author information
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaE. N. Korosteleva & V. V. Korzhova
References
  1. J. Zhang, W. Ke, W. Ji, et al., Mater. Sci. Eng. A, 648, 158–163 (2015).
  2. H. Attar, L. Löber, A. Funk, et al., Mater. Sci. Eng. A, 625, 350–356 (2015).
  3. S. S. Sahay, K. S. Ravichandran, and R. Atri, J. Mater. Res., 14, No. 11, 4214–4223 (1999).
  4. S. C. Tjong and Z. Y. Ma, Mater. Sci. Eng. R: Rep., 29, Nos. 3–4, 49–113 (2000).
  5. N. P. Lyakishev, ed., Diagrammes of Bimetallic Systems States: A Handbook, Vol. 1, Mashinostroenie, Moscow (1996).
  6. Sh. Li, K. Kondoh, H. Imai, et al., Mater. Des., 95, 127–132 (2016).
  7. V. M. Imayev, R. A. Gaisin, and R. M. Imayev, Mater. Sci. Eng. A, 641, 71–83 (2015).
  8. V. M. Imayev, R. A. Gaisin, and R. M. Imayev, Mater. Sci. Eng. A, 609, 34–41 (2014).
  9. X. Shen, Zh. Zhang, S. Wei, et al., J. Alloys Compd., 509, No. 29, 7692–7696 (2011).
  10. H. Cheloui, Zh. Zhang, X. Shen, et al., Mater. Sci. Eng. A, 528, 3849–3853 (2011).
  11. S. Wei, Zh.-H. Zhang, F.-Ch. Wang, et al., Mater. Sci. Eng. A, 560, 249–255 (2013).
  12. F.-Ch. Wang, Zh.-H. Zhang, J. Luo, et al., Compos. Sci. Technol., 69, 2682–2687 (2009).
  13. R. Chaudhari and R. Bauri, Mater. Sci. Eng. A, 587, 161–167 (2013).
  14. A. Miklaszewski, Int. J. Refract. Hard Met., 53, Part A, 56–60 (2015).
  15. Zh. Yan, F. Chen, Y. Cai, and Y. Zheng, Powder Technol., 267, 309–314 (2014).
  16. A. G. Akopyan, S. K. Dolukhanyan, and I. P. Borovinskaya, Fiz. Goren. Vzryva, 14, No. 3, 70–79 (1978).
  17. T. S. Azatyan, V. M. Mal’tsev, A. G. Merzhanov, and V. A. Seleznev, Fiz. Goren. Vzryva, 16, No. 2, 37–42 (1980).
  18. G. A. Pribytkov, V. V. Kozhova, M. G. Krinitсyn, and I. A. Firsina, Inorg. Mater. Appl. Res., 10, No. 6, 1338–1347 (2019).