Stability of Carbons in the Composition of Electrodes for Supercapacitors with Organic Electrolytes

E. A. Kiseleva E. A. Kiseleva , I. V. Yanilkin I. V. Yanilkin , A. V. Grigorenko A. V. Grigorenko , E. I. Shkol’nikov E. I. Shkol’nikov , G. E. Val’yano G. E. Val’yano
Российский электрохимический журнал
Abstract / Full Text

The stability of double-layer supercapacitors with organic electrolyte and electrodes of activated charcoal is improved by optimizing the activation parameters of the material and also by its additional thermal treatment after the activation. The optimized modes of such pretreatment are shown.

Author information
  • Joint Institute of High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia

    E. A. Kiseleva, I. V. Yanilkin, A. V. Grigorenko, E. I. Shkol’nikov & G. E. Val’yano

  1. Atamanyuk, I.N., Vervikishko, D.E., Sametov, A.A., Tarasenko, A.B., Shkol’nikov, E.I., and Yanilkin, I.V., Study of promising electrode materials for supercapacitors to be used in power stations based on renewable energy, Al’tern. Energ. Ekol., 2013, no. 11, p. 92.
  2. Atamanyuk, I.N., Vervikishko, D.E., Grigorenko, A.V., Sametov, A.A., Shkol’nikov, E.I., and Yanilkin, I.V., The effect of technological parameters of electrode preparation on the electrochemical characteristics of supercapacitors with aqueous electrolyte, Elektrokhim. Energ., 2014, vol. 1, no. 1, p. 3.
  3. Vervikishko, D.E., Yanilkin, I.V., Dobele, G.V., Vol’perts, A., Atamanyuk, I.N., Sametov, A.A., and Shkol’nikov, E.I., Activated carbon for electrodes in supercapacitors with aqueous electrolyte, Teplofiz. Vys. Temp., 2015, vol. 53, no. 5, p. 799.
  4. Yanilkin, I.V., Sametov, A.A., and Shkolnikov, E.I., Effect of the amount of F4 fluoroplastic binder in carbon electrodes on characteristics of supercapacitors, Russ. J. Appl. Chem., 2015, vol. 88, no. 2, p. 335.
  5. Yanilkin, I.V., Sametov, A.A., Atamanyuk, I.N., Vol’pert, A., Dobele, G.V., Zhurilova, M.A., Grigorenko, A.A., Kolokol’nikov, V.N., Vervikishko, D.E., and Shkol’nikov, E.I., Porous structure and electrical capacitance of charcoals in aqueous and organic electrolytes, Russ. J. Appl. Chem., 2015, vol. 88, no. 7, p. 1157.
  6. Dobele, G., Volperts, A., Telysheva, G., Zhurinsh, A., Vervikishko, D., Sametov, A., Shkolnikov, E., and Ozolinsh, J., Wood-based activated carbons for supercapacitors with organic electrolyte, Holzforschung, 2015, vol. 69, no. 6, p. 777.
  7. Kurzweil, P. and Chwistek, M., Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products, J. Power Sources, 2008, vol. 176, p. 555.
  8. Azais, P., Duclaux, L., Florian, P., Massiot, D., Lillo-Rodenas, M.-A., Linares-Solano, A., Peres, J.P., Jehoulet, C., and Beguin, F., Causes of supercapacitors ageing in organic electrolyte, J. Power Sources, 2007, vol. 171, p. 1046.
  9. Kotz, R., Hahn, M., Ruch, P., and Gallay, R., Comparison of pressure evolution in supercapacitor devices using different aprotic solvents, Electrochem. Commun., 2008, vol. 10, p. 359.
  10. Ruch, P.W., Cericola, D., Foelske, A., Kotz, R., and Wokaun, A., A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages, Electrochim. Acta, 2010, vol. 55, p. 2352.
  11. Kotz, R., Ruch, P.W., and Cericola, D., Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests, J. Power Sources, 2010, vol. 195, p. 923.
  12. Bohlen, O., Kowal, J., and Sauer, D.U., Ageing behavior of electrochemical double layer capacitors. Part I. Experimental study and ageing model, J. Power Sources, 2007, vol. 172, p. 468.
  13. Bohlen, O., Kowal, J., and Sauer, D.U., Ageing behavior of electrochemical double layer capacitors. Part II. Lifetime simulation model for dynamic applications, J. Power Sources, 2007, vol. 173, p. 626.
  14. Gualous, H., Gallay, R., Alcicek, G., Tala-Ighil, B., Oukaour, A., Boudart, B., and Makany, Ph., Supercapacitor ageing at constant temperature and constant voltage and thermal shock, Microelectron. Reliab., 2010, vol. 50, p. 1783.
  15. Hammar, A., Venet, P., Lallemand, R., Coquery, G., and Rojat, G., Study of accelerated aging of supercapacitors for transport applications, IEEE Trans. Ind. Electron. Control Instrum., 2010, vol. 57, no. 12, p. 3972.
  16. Kreczanik, P., Venet, P., Hijazi, A., and Clerc, G., IEEE Trans. Ind. Electron. Control Instrum., 2014, vol. 61, no. 9, p. 4895.
  17. Bleda-Martinez, M.J., Lozano-Castello, D., Morallon, E., Cazorla-Amoros, D., and Linares-Solano, A., Chemical and electrochemical characterization of porous carbon materials, Carbon, 2006, vol. 44, p. 2642.
  18. Lozano-Castello, D., Calo, J.M., Cazorla-Amoros, D., and Linares-Solano, A., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen, Carbon, 2007, vol. 45, p. 2529.
  19. Chaari, R., Briat, O., and Vinassa, J.-M., Capacitance recovery analysis and modelling of supercapacitors during cycling ageing tests, Energy Convers. Manage., 2014, vol. 82, p. 37.