Статья
2018

TiO2/Fe3O4/Multiwalled Carbon Nanotubes Nanocomposite as Sensing Platform for Simultaneous Determination of Morphine and Diclofenac at a Carbon Paste Electrode


Ebrahim Dasht Razmi Ebrahim Dasht Razmi , Hadi Beitollahi Hadi Beitollahi , Masoud Torkzadeh Mahani Masoud Torkzadeh Mahani , Marzieh Anjomshoa Marzieh Anjomshoa
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518140057
Abstract / Full Text

A nanocomposite of TiO2/Fe3O4/MWCNTs (TFMWCNT) and ionic liquid was used to fabrication of a novel modified carbon paste electrode. The modified electrode was used for voltammetric determination of morphine. The proposed method exhibited wide linear dynamic range of 2.5 × 10–8 to 6.0 × 10–4 M with a detection limit (S/N = 3) of 1.5 × 10–8 M for morphine. Also, the diffusion coefficient (D = 2.83 × 10–6 cm2/s) and electron transfer coefficient (α = 0.31) for morphine oxidation were also determined. The novel sensor was used for simultaneous determination of morphine and diclofenac using square wave voltammetry (SWV). Finally this method was used for determination of morphine and diclofenac in some real samples.

Author information
  • Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran

    Ebrahim Dasht Razmi

  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    Hadi Beitollahi

  • Department of Biotechnology, Institute of Science, High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran

    Masoud Torkzadeh Mahani & Marzieh Anjomshoa

References
  1. Torres Lopez, J.E., Carmona Diaz, E., Cortes Penaloza, J.L., Guzman Priego, C.G., and Rocha Gonzalez, H.I., Antinociceptive synergy between diclofenac and morphine after local injection into the inflamed site, Pharmacol. Rep., 2013, vol. 65, p. 358.
  2. Li, Y., Zou, L., Li, Y., Li, K., and Ye, B., A new voltammetric sensor for morphine detection based on electrochemically reduced MWNTs-doped graphene oxide composite film, Sens. Actuators B, 2014, vol. 201 p. 511.
  3. Wada, M., Yokota, C., Ogata, Y., Kuroda, N., Yamada, H., and Nakashima, K., Sensitive HPLC—fluorescence detection of morphine labeled with DIB–Cl in rat brain and blood microdialysates and its application to the preliminarily study of the pharmacokinetic interaction between morphine and diclofenac, Anal. Bioanal. Chem., 2008, vol. 391, p. 1057.
  4. Mokhtari, A., Karimi-Maleh, H., Ensafi, A.A., and Beitollahi, H., Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples, Sens. Actuators B, 2012, vol. 169, p. 96.
  5. Jafari-Nodoushan, M., Barzin, J., and Mobedi, H., A stability-indicating HPLC method for simultaneous determination of morphine and naltrexone, J. Chromatogr. B, 2016, vol. 1011, p. 163.
  6. Pourtaghavi Talemi, R. and Mashhadizadeh, M.H., A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode, Talanta, 2015, vol. 131, p. 460.
  7. Ferreira Gomes, J., Adaes, S., Mendonça, M., and Castro Lopes, J.M., Analgesic effects of lidocaine, morphine and diclofenac on movement-induced nociception, as assessed by the Knee-Bend and CatWalk tests in a rat model of osteoarthritis, Pharm. Biochem. Behav., 2012, vol. 101, p. 617.
  8. Gimenes, D.T., Cunha, R.R., Carvalho Ribeiro, M.M., Pereira, P.F., Abarza Munoz, R.A., and Richter, E.M., Two new electrochemical methods for fast and simultaneous determination of codeine and diclofenac, Talanta, 2013, vol. 116, p. 1026.
  9. Gostick, N., James, I.G., Khong, T.K., Roy, P., Shepherd, P.R., and Miller, A.J., Controlled-release indomethacin and sustained-release diclofenac sodium in the treatment of osteoarthritis: A comparative controlled clinical trial in general practice, Curr. Med. Res. Opin., 1990, vol. 12, p. 135.
  10. Ammon, S., Marx, C., Behrens, C., Hofmann, U., Murdter, T., Griese, E.U., and Mikus, G., Diclofenac does not interact with codeine metabolism in vivo: a study in healthy volunteers, BMC Clin. Pharm., 2002, vol. 2, p. 101.
  11. Taei, M., Hasanpour, F., Hajhashemi, V., Movahedi, M., and Baghlani, H., Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2–Zn2SnO4 nanocomposites paste electrode, Appl. Surf. Sci., 2016, vol. 363, p. 490.
  12. Aoki, K., Shilama, Y., Kokado, A., Yoshida, T., and Kuroiwa, Y., Enzyme-linked immunosorbent assay and latex agglutination inhibition reaction test for morphine in urine, Forensic. Sci. Int., 1996, vol. 81, p. 125.
  13. Isbell, T.A., Strickland, E.C., Hitchcock, J., McIntire, G., and Colyer, C.L., Capillary electrophoresis-mass spectrometry determination of morphine and its isobaric glucuronide metabolites, J. Chromatogr. B, 2015, vol. 980, p. 65.
  14. Jain, R., Utility of thin layer chromatography for detection of opioids and benzodiazepines in a clinical setting, Addict. Behav., 2000, vol. 25, p. 451.
  15. Ganjali, M.R., Larijani, B., and Pourbasheer, S., Fabrication of an all solid state (ASS) polymeric membrane sensor (PME) for tramadol and its application, Int. J. Electrochem. Sci., 2016, vol. 11, p. 2119.
  16. Beitollahi, H. and Garkani Nejad, F., Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.
  17. Bulut, I., Simultaneous square-wave voltammetric determination of acetazolamide and theophylline in pharmaceutical formulations, Russ. J. Electrochem., 2016, vol. 52, p. 427.
  18. Yuan, Y., Bao, Z.H., Li, S.M., and Zhao, K., Electrochemical evaluation of antioxidant capacity in pharmaceutical antioxidant excipient of drugs on guaninebased modified electrode, J. Electroanal. Chem., 2016, vol. 772, p. 58.
  19. Jahani, Sh. and Beitollahi, H., Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes, Electroanalysis, 2016, vol. 28, p. 2022.
  20. Shikandar, D. Bukkitgar, N., and Shetti, P., Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode, Mater. Sci. Eng. C, 2016, vol. 65, p. 262.
  21. Tarinc, D. and Golcu, A., Electrochemical behavior of valacyclovir and its square wave and differential pulse voltammetric determination in pharmaceuticals and biological fluids, Russ. J. Electrochem., 2015, vol. 51, p. 149.
  22. Alizadeh, T., Ganjali, M.R., Akhoundian, M., and Norouzi, P., Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes, Microchim. Acta, 2016, vol. 183, p. 1123.
  23. Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., and Soltani, H., Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid, Electroanalysis, 2015, vol. 27, p. 2620.
  24. Chandrashekar, B.N., Kumara Swamy, B.E., Ashoka, N.B., and Pandurangachar, M., Simultaneous electrochemical determination of epinephrine and uric acid at 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid modified carbon paste electrode: a voltammetric study, J. Mol. Liq., 2012, vol. 165, p. 168.
  25. Ganjali, M.R., Khoshsafar, H., Shirzadmehi, A., Javanbakht, M., and Faridbod, F., Improvement of carbon paste ion selective electrode response by using room temperature ionic liquids (RTILs) and multiwalled carbon nanotubes (MWCNTs), Int. J. Electrochem. Sci., 2009, vol. 4, p. 435.
  26. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N'-phenylhydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.
  27. Varchenko, V.V., Belikov, K.N., and Drapailo, A.B., Effect of the p-tert-butylcalix[6]arene modifier on the electrochemical properties of the modified carbon paste electrode, Russ. J. Electrochem., 2015, vol. 51, p. 857.
  28. Li, Y., Zhai, X., Liu, X., Wang, L., Liu, H., and Wang, H., Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode, Talanta, 2016, vol. 148, p. 362.
  29. Alizadeh, T., Ganjali, M.R., Norouzi, P., Zare, M., and Zeraatkar, A., A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer–carbon paste electrode, Talanta, 2009, vol. 79, p. 1197.
  30. Kalimuthu, P. and John, S.A., Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using polymer film modified electrode, J. Chem. Sci., 2011, vol. 123, p. 349.
  31. Chitravathi, S., Reddy, S., and Kumara Swamy, B.E., Electrochemical determination of ezetimibe by MgO nanoflakes-modified carbon paste electrode, J. Electroanal. Chem., 2016, vol. 764, p. 1.
  32. Beitollahi, H., Gholami, A., and Ganjali, M.R., Preparation, characterization and electrochemical application of Ag–ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode, Mater. Sci. Eng. C, 2015, vol. 57, p. 107.
  33. Xu, M., Ma, M., and Ma, E., Electrochemical determination of tryptophan based on silicon dioxide nanopartilces modified carbon paste electrode, Russ. J. Electrochem., 2012, vol. 48, p. 489.
  34. Kumar, M. and Kumara Swamy, B.E., Role of heat on the development of electrochemical sensors on bare and modified Co3O4/CuO composite nanopowder carbon paste electrodes, Mater. Sci. Eng. C, 2016, vol. 58, p. 142.
  35. Norouzi, B. and Mirkazemi, T., Electrochemical sensor for amoxicillin using Cu/poly (o-toluidine) (sodium dodecyl sulfate) modified carbon paste electrode. Russ. J. Electrochem., 2016, vol. 52, p. 37.
  36. Beitollahi, H. and Nekooei, S., Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine, Electroanalysis, 2016, vol. 28, p. 645.
  37. Jalali, F. and Ranjbar, S., Electrocatalytic oxidation of captopril using a carbon-paste electrode modified with copper-cobalt hexacyanoferrate, Russ. J. Electrochem., 2014, vol. 50, p. 482.
  38. Khan, N.A., Hasan, Z., and Jhung, S.H., Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization, Chem. Eur. J., 2014, vol. 20, p. 376.
  39. Beitollahi, H., Tajik, S., and Biparva, P., Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples, Measurement, 2014, vol. 56, p. 170.
  40. Ruan, C., Sun, Z., Lu, S., Li, L., Lou, J., and Sun, W., Electrochemistry of adenosine-5'-diphosphate on ionic liquid modified carbon electrode and its detection, Russ. J. Electrochem., 2014, vol. 50, p. 129.
  41. Menart, E., Jovanovski, V., and Hocevar, S.B., Silver particle-decorated carbon paste electrode based on ionic liquid for improved determination of nitrite, Electrochem. Commun., 2015, vol. 52, p. 45.
  42. Beitollahi, H., Tajik, S., and Jahani, Sh., Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite, Electroanalysis, 2016, vol. 28, p. 1093.
  43. Qiao, L., Shougee, A., Albrecht, T., and Fobelets, K., Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid, Electrochim. Acta, 2016, vol. 210, p. 32.
  44. Tajik, S., Taher, M.A., and Beitollahi, H., Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline, Sens. Actuators B, 2014, vol. 197, p. 228.
  45. Atta, N.F., El-Ads, E.H., Ahmed, Y.M., and Galal, A., Determination of some neurotransmitters at cyclodextrin/ ionic liquid crystal/graphene composite electrode, Electrochim. Acta, 2016, vol. 199, p. 319.
  46. Foroughi, M.M., Beitollahi, H., Tajik, S., Hamzavi, M., and Parvan, H., Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode: application to determination of hydroxylamine in water samples, Int. J. Electrochem. Sci., 2014, vol. 9, p. 2955.
  47. Mahmoudi Moghaddam, H. and Beitollahi, H., Simultaneous voltammetric determination of norepinephrine and acetaminophen at the surface of a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6503.
  48. Wang, L., Huang, Y., Ding, X., Liu, P., Zong, M., Sun, X., Wang, Y., and Zhao, Y., Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: synthesis and enhanced electromagnetic absorption properties, Mater. Lett., 2013, vol. 109, p. 146.
  49. Wang, L., Zhu, J., Yang, H., Wang, F.,Qin, Y., Zhao, T., and Zhang, P., Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance, J. Alloys Compd., 2015, vol. 634, p. 232.
  50. Guo, Q., Guo, P., Li, J., Yin, H., Liu, J., Xiao, F., Shen, D., and Li, N., Fe3O4–CNTs nanocomposites: inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries, J. Solid State Chem., 2014, vol. 213, p. 104.
  51. Lai, B.H. and Chen, D.H., Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for nearinfrared photothermal ablation of bacteria, Acta Biomater., 2013, vol. 9, p. 7573.
  52. Luo, Y., Lu, Z., Jiang, Y., Wang, D., Yang, L., Huo, P., Da, Z., Bai, X., Xie, X., and Yang, P., Selective photodegradation of 1-methylimidazole-2-thiol by the magnetic and dual conductive imprinted photocatalysts based on TiO2/Fe3O4/MWCNTs, Chem. Eng. J., 2014, vol. 240, p. 244.
  53. Li, Y., Yi, H., Tang, X., Liu, X., Wang, Y., Cui, B., and Zhao, S., Study on the performance of simultaneous desulfurization and denitrification of Fe3O4-TiO2 composites, Chem. Eng. J., 2016, vol. 304, p. 89.
  54. Li, Z.D., Wang, H.L., Wei, X.N., Liu, X.Y., Yang, Y.F., and Jiang, W.F., Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core–shell microspheres supported by silica aerogels from industrial fly ash, J. Alloys Compd., 2016, vol. 659, p. 240.
  55. Zhang, L., Wu, Z., Chen, L., Zhang, L., Li, X., Xu, H., Wang, H., and Zhu, G., Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity, Solid State Sci., 2016, vol. 52, p. 42.
  56. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.