Examples



mdbootstrap.com



 
Статья
2021

Enhancement of Multicolor Luminescence of GdVO4 Core-Shell Structure via TiO2 Interlayer


 Wei-jun Gui Wei-jun Gui, Teng-yuan SuoTeng-yuan Suo, Xiao-ling ChenXiao-ling Chen, Xiao-hang ZhangXiao-hang Zhang
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421130094
Abstract / Full Text

By using sodium citrate as complexing and capping agent, GdVO4 core-shell structures (CSSs) were prepared via hydrothermal method, with Dy3+ and Eu3+ doped into the core and shell layer, respectively. The as-prepared CSSs were then annealed at 600°C for 2 h in muffle furnace. XRD and TEM results show that crystalline phase of the well-dispersed CSSs is tetragonal phase. To avoid interdiffusion of Dy3+ and Eu3+ during annealing process, i.e., to prevent energy transfer from Dy3+ to Eu3+, TiO2 interlayer was inserted between the core and shell layer. The normalized emission spectra at the excitation wavelength of 253 or 340 nm prove that TiO2 interlayer can significantly enhance luminescence of Dy3+ ions. Besides, CIE (x, y) chromaticity coordinate diagram analysis shows that the CSS with TiO2 interlayer provide much better multicolor luminescence performance than other materials. The experimental scheme presented in the context provides a feasible way to find high-quality phosphors for UV-excitated white light-emitting diod (WLED).

Author information
  • School of Science, Nanchang Institute of Technology, 330099, Nanchang, China Wei-jun Gui, Teng-yuan Suo, Xiao-ling Chen & Xiao-hang Zhang
References
  1. L. P. Dong, L. Zhang, Y. C. Jia, et al., J. Mater. Chem. C (2020). https://doi.org/10.1039/d0tc02704a
  2. Y. N. Zhou, W. D. Zhuang, Y. S. Hu, et al., Inorg. Chem. 58, 1492 (2019).
  3. M. H. Fang, C. C. Ni, X. J. Zhang, et al., ACS Appl. Mater. Interface 8, 30677 (2016).
  4. J. Y. Zhong, W. R. Zhao, Y. Zhuo, et al., J. Mater. Chem. C 7, 654 (2019).
  5. P. P. Dang, D. J. Liu, G. G. Li, et al., Adv. Opt. Mater., 1901993 (2020).
  6. H. Wang, X. P. Liang, K. Liu, et al., Opt. Mater. 53, 94 (2016).
  7. W. J. Gui and S. Q. Liu, J. Alloys Compd. 708, 1 (2017).
  8. X. G. Zhang and M. L. Gong, Ind. Eng. Chem. Res. 54, 7632 (2015).
  9. S. Stojadinovic and A. Ciric, J. Lumin. 226, 117403 (2020).
  10. Y. X. Xiao, S. Q. Tan, D. L. Wang, et al., Appl. Surf. Sci. 530, 117116 (2020).
  11. P. Kumari and J. Manam, J. Mater. Sci.: Mater. Electron. 27, 9437 (2016).
  12. O. Savchuk, J. J. C. Marti, C. Cascales, et al., Nanomaterials 10, 993 (2020).
  13. P. Kumari and J. Manam, Chem. Phys. Lett. 662, 56 (2016).
  14. M. Chen, J. H. Wang, Z. J. Luo, et al., RSC Adv. 6, 9612 (2016).
  15. Y. X. Liu, G. X. Liu, X. T. Dong, et al., Phys. Chem. Chem. Phys. 17, 26638 (2015).
  16. T. V. Gavrilovic, D. J. Jovanovic, V. Lojpur, et al., Sci. Rep. 4, 4209 (2015).
  17. H. F. Zhang, T. Wang, Z. X. Yang, et al., CrystEngComm 21, 1019 (2019).
  18. A. Makdee, P. Unwiset, K. C. Chanapattharapol, et al., Phys. Chem. Chem. Phys. 213, 431 (2018).
  19. P. Y. Zhang, T. Song, T. T. Wang, et al., RSC Adv. 7, 17873 (2017).
  20. F. Li, X. Liu, and T. He, Chem. Phys. Lett. 686, 78 (2017).