Статья
2020

Synthesis and Electrochemical Analysis of Li3Ti0.75(MoO4)3 Phase with Lyonsite Structure


D. Saritha D. Saritha
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520080054
Abstract / Full Text

Li3Ti0.75(MoO4)3 compound crystallizes in lyonsite type structure. The structure was prepared by the solid state reaction method. Electrochemical lithium insertion was performed into sample for the first time. Preliminary studies were carried out to analyze the sample as electrode material for Li-ion batteries. The electrochemical charge discharge curves shows insertion of 4.8Li is obtained in sample when discharged to 1.5 V and extraction of 3.3Li is observed during charge. A reversible capacity of 112 mA h/g is observed after 25 cycles.

Author information
  • Department of Chemistry, Chaitanya Bharathi Institute of Technology, 500075, Hyderabad, India

    D. Saritha

References
  1. Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B., LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density, Mat. Res. Bull., 1980, vol. 15, p. 783.
  2. Tsumura, T., Shimizu, A., and Inagaki, M., Lithium extraction/insertion form LiMn2O4 effect of crystallinity, Solid State Ionics, 1996, vol. 90, p. 197.
  3. Shirakawa, J., Nakayama, M., Wakihara, M., and Uchimoto, Y., Changes in electronic structure upon lithium insertion into Fe2(SO4)3 and Fe2(MoO4)3 investigated by X-ray absorption spectroscopy, J. Phys. Chem. B, 2007, vol. 111, p. 1424.
  4. Alvarez-Vega, M., Amador, U., and Arroyo-de Dompablo, M.E., Electrochemical study of Li3Fe(MoO4)3 as positive electrode in lithium cells, J. Electrochem. Soc., 2005, vol. 152, no. 7, p. A1306.
  5. Begam, K.M. and Prabaharan, S.R.S., Improved cycling performance of nano-composite Li2Ni2(MoO4)3 as a lithium battery cathode material, J. Power Sources, 2006, vol. 159, p. 319.
  6. Michael, M.S., Begam, K.M., Cloke, M., and Prabaharan, S.R.S., New nasicon type oxyanion high capacity anode, Li2Co2(MoO4)3, for lithium-ion batteries: preliminary studies, J. Solid State Electrochem., 2008, vol. 12, p. 1025.
  7. Morcrette, M., Rozier, P., Dupont, L., Mugnier, E., Sannier, L., Galy, J., and Tarascon, J.M., A reversible copper extrusion-insertion electrode for rechargeable Li batteries, Nat. Mater., 2003, vol. 2, p. 755.
  8. Begam, K.M., Michael, M.S., Yap, Y.H.T., and Prabaharan, S.R.S., New lithiated nasicon-type Li2Ni2(MoO4)3 for rechargeable lithium batteries, Electrochem. Solid State Lett., 2004, vol. 7, p. A242.
  9. Prabaharan, S.R.S., Michael, M.S., and Begam, K.M., Synthesis of a polyanion cathode material, Li2Co2(MoO4)3, and its electrochemical properties for lithium batteries, Electrochem. Solid State Lett., 2004, vol. 7, p. A416.
  10. Armstrong, A.R., Armstrong, G., Canales, J., Garcia, R., and Bruce, P.G., Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater., 2005, vol. 17, p. 862.
  11. Patoux, S. and Masquelier, C., Lithium insertion into titanium phosphates, silicates and sulfates, Chem. Mater., 2002, vol. 14, p. 5057.
  12. Smit, J.P., Stair, P.C., and Poeppelmeier, K.R., The adoptable lyonsite structure, Chem. A Europ. J., 2006, vol. 12, p. 5944.
  13. Ibers, J.A. and Smith, G.W., Crystal structure of sodium molybdate, Acta Crystallogr., 1964, vol. 17, p. 190.
  14. Mikhailova, D., Sarapulova, A., Voss, A., Thomas, A., Oswald, S., Gruner, W., Trots, D.M., Bramnik, N.N., and Ehrenberg, H., Li3V(MoO4)3: a new material for both lithium extraction and insertion, Chem. Mater., 2010, vol. 22, no. 10, p. 3165.
  15. Arroyoy de Dompablo, M.E. and Alvarez-Vega, M., Structural evolution of Li3+xFe(MoO4)3 upon lithium insertion in the composition range 0 ≤ x ≤ 1, J. Electrochem. Soc., 2006, vol. 153, p. A275.
  16. Begam, K.M., Micheal, M.S., Tafiuq Yap, Y.H., and Prabhaharan, S.R.S., New lithiated NASICON type Li2Ni2(MoO4)3 for rechargeable batteries, Electrochem. Solid State Lett., 2004, vol. 7, no. 8, p. A242.
  17. Manickam, M., Minato, K., and Takata, M., Synthesis and electrochemical properties of TiNb(PO4)3 cathode materials for lithium secondary batteries, J. Electroanal. Chem., 2004, vol. 562, p. 1.