Examples



mdbootstrap.com



 
Статья
2018

Synthesis of PtCu/С Electrocatalysts with Different Structures and Study of Their Functional Characteristics


S. V. BelenovS. V. Belenov, V. E. GutermanV. E. Guterman, N. Yu. TabachkovaN. Yu. Tabachkova, E. A. MoguchikhE. A. Moguchikh, A. A. AlekseenkoA. A. Alekseenko, V. A. VolochaevV. A. Volochaev, N. M. NovikovskiyN. M. Novikovskiy
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130062
Abstract / Full Text

PtCu/C electrocatalysts with similar compositions but different distributions of components in bimetallic nanoparticles were obtained by simultaneous and sequential reduction of copper(II) and platinum( IV) in a carbon suspension. The catalyst obtained by multistage synthesis while sequentially increasing the Pt(IV) concentration in the precursor solution added at each stage showed the highest stability and activity in oxygen electroreduction in acidic media. This catalyst was least liable to selective dissolution of copper during its operation. The influence of the architecture of bimetallic PtCu nanoparticles on the electrochemical behavior of the catalysts is due to the peculiarities of the structure rearrangement of nanoparticles during the enrichment of the protective surface layer with platinum.

Author information
  • Faculty of Chemistry and Institute of Physics, Southern Federal University, Rostov-on-Don, 344090, RussiaS. V. Belenov, V. E. Guterman, E. A. Moguchikh, A. A. Alekseenko, V. A. Volochaev & N. M. Novikovskiy
  • National University of Science and Technology MISiS, Moscow, 119991, RussiaN. Yu. Tabachkova
References
  1. Stamenkovic, V.R., Mun, B.S., Arenz, M., Mayrhofer, K.J.J., Lucas, C.A., Wang, G., Ross, P.N., and Markovic, N.M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nature Materials, 2007, vol. 6, p. 241.
  2. Yaroslavtsev, A.B., Dobrovolsky, Y.A., Frolova, L.A., Gerasimova, E.V., Sanginov, E.A., and Shaglaeva, N.S., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, p. 191.
  3. Sui, S., Wang, X., Zhou, X., Su, Y., Riffat, S., and Liu, C., A comprehensive review of Pt electrocatalysts for oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A, 2017, vol. 5, p. 1808.
  4. Ge, X., Chen, L., Kang, J., Fujita, T., Hirata, A., Zhang, W., Jiang, J., and Chen, M., A Core-Shell Nanoporous Pt-Cu Catalyst with Tunable Composition and High Catalytic Activity, Adv. Funct. Mater., 2013, vol. 23, p. 4156.
  5. Kongkanand, A. and Mathias, M.F., The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells, J. Phys. Chem. Lett., 2016, vol. 7, p. 1127.
  6. Wu, J. and Yang, H., Platinum-based oxygen reduction electrocatalysts, Acc. Chem. Res., 2013, vol. 46, p. 1848.
  7. Ammam, M. and Easton, E.B., PtCu/C and Pt(Cu)/C catalysts: Synthesis, characterization and catalytic activity towards ethanol electrooxidation, J. Power Sources, 2013, vol. 222, p. 79.
  8. Luo, M., Wei, L., Wang, F., Han, K., and Zhu, H., Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells, J. Power Sources, 2014, vol. 270, p. 34.
  9. Lv, Q., Chang, J., Xing, W., and Liu, C., Dispersioncontrolled PtCu clusters synthesized with citric acid using galvanic displacement with high electrocatalytic activity toward methanol oxidation, RSC Advances, 2014, vol. 4, p. 32997.
  10. Singh, R.N., Awasthi, R., and Sharma, C.S., Review: An Overview of Recent Development of Platinum-Based Cathode Materials for Direct Methanol Fuel Cells, Int. J. Electrochem. Sci., 2014, vol. 9, p. 5607.
  11. Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Pt–M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1609.
  12. Loukrakpam, R., Shan, S., Petkov, V., Yang, L., Luo, J., and Zhong, C., Atomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction Reaction, J. Phys. Chem. C, 2013, vol. 117, p. 20715.
  13. Antolini, E., Alloy intermetallic compounds: Effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts, Appl. Catal., B, 2017, vol. 217, p. 201.
  14. Oezaslan, M., Hasché, F., and Strasser, P., Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes, J. Phys. Chem. Lett., 2013, vol. 4, p. 3273.
  15. Jung, N., Sohn, Y., Park, H.J., Nahm, K.S., Kim, P., and Yoo, S.J., High-performance PtCuxPt core-shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction, Appl. Catal., B, 2016, vol. 196, p. 199.
  16. Wang, D., Yu, Y., Xin, H.L., Hovden, R., Ercius, P., et al., Tuning Oxygen Reduction Reaction Activity via Controllable Dealloying: A Model Study of Ordered Cu3Pt/C Intermetallic Nanocatalysts, Nano Lett., 2012, vol. 12, p. 5230.
  17. Wang, C., Chi, M., Li, D., Strmcnik, D., van der Vliet, D., et al., Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces, J. Am. Chem. Soc., 2011, vol. 133, p. 14396.
  18. Zhang, J., Lima, F.H.B., Shao, M.H., Sasaki, K., Wang, J.X., Hanson, J., and Adzic, R.R., Platinum Monolayer on Nonnoble Metal-Noble Metal Core-Shell Nanoparticle Electrocatalysts for O2 Reduction, J. Phys. Chem. B, 2005, vol. 109, p. 22701.
  19. Luo, M., Wei, L., Wang, F., Han, K., and Zhu, H., Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells, J. Power Sources, 2014, vol. 270, p. 34.
  20. Shao, M., Chang, Q., Dodelet, J.-P., and Chenitz, R., Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, Chem. Rev., 2016, vol. 116, p. 3594.
  21. Strasser, P. and Kühl, S., Dealloyed Pt-based coreshell oxygen reduction electrocatalysts, Nano Energy, 2016, vol. 29, p. 166.
  22. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Yu., and Volochaev, V.A., The relationship between activity and stability of deposited platinum-carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p. 531.
  23. Peng, Z. and Yang, H., Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property, Nano Today, 2009, vol. 4, p. 143.
  24. Marcu, A., Toth, G., Srivastava, R., and Strasser, P., Preparation, characterization and degradation mechanisms of PtCu alloy nanoparticles for automotive fuel cells, J. Power Sources, 2012, vol. 208, p. 288.
  25. Sohn, Y., Park, J.H., Kim, P., and Joo, J.B., Dealloyed PtCu catalyst as an efficient electrocatalyst in oxygen reduction reaction, Curr. Appl. Phys., 2015, vol. 15, p. 993.
  26. Bogdanovskaya, V.A. and Tarasevich, M.R., Electrochemical processes on multi-component cathodic catalysts PtM and PtM1M2 (M = Co, Ni, Cr): The effect of surface composition on the catalyst stability and its activity in O2 reduction, Russ. J. Electrochem., 2011, vol. 47, p. 380.
  27. Wang, C., Wang, G., van der Vliet, D., Chang, K.-C., Markovic, N.M., and Stamenkovic, V.R., Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 6933.
  28. Do, J.-S., Chen, Y.-T., and Lee, M.-H., Effect of thermal annealing on the properties of Corich core–Ptrich shell/C oxygen reduction electrocatalyst, J. Power Sources, 2007, vol. 172, p. 623.
  29. Lee, M.H. and Do, J.S., Kinetics of oxygen reduction reaction on Co–Pt/C electrocatalysts, J. Power Sources, 2009, vol. 188, p. 353.
  30. Jung, N., Sohn, Y., Park, J.H., Nahm, K.S., Kim, P., and Yoo, S.J., High-performance PtCuPt core–shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction, Appl. Catal., B, 2016, vol. 196, p. 199.
  31. Belenov, S.V., Volochaev, V.A., Pryadchenko, V.V., Srabionyan, V.V., Shemet, D.B., Tabachkova, N.Yu., and Guterman, V.E., Phase behavior of Pt–Cu nanoparticles with different architecture upon their thermal treatment, Nanotechnol. Russ., 2017, vol. 12, p. 147.
  32. Pryadchenko, V.V., Belenov, S.V., Shemet, D.B., Volochaev, V.A., Srabionyan, V.V., Avakyan, L.A., Tabachkova, N.Y., Guterman, V.E., and Bugaev, L.A., The effect of thermal treatment on the atomic structure of core–shell PtCu nanoparticles in PtCu/C electrocatalysts, Phys. Solid State, 2017, vol. 59, p. 1666.
  33. Srabionyan, V.V., Pryadchenko, V.V., Kurzin, A.A., Belenov, S.V., Avakyan, L.A., Guterman, V.E., and Bugaev, L.A., Atomic structure of PtCu nanoparticles in PtCu/C catalysts from EXAFS spectroscopy data, Phys. Solid State, 2016, vol. 58, p. 752.
  34. Pryadchenko, V.V., Srabionyan, V.V., Kurzin, A.A., Bulat, N.V., Shemet, D.B., Avakyan, L.A., Belenov, S.V., Volochaev, V.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu core–shell nanoparticles in PtCu/C electrocatalysts: Structural and electrochemical characterization, Appl. Catal., A, 2016, vol. 525, p. 226.
  35. Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts, Inorg. Mater., 2015, vol. 51, p. 1258.
  36. Brugeman, S.A., Zekhtor, M.Yu., and Novikovskiy, N.M., “Universal Roentgen Spectra” (UniveRS), Certificate of state registration of the computer program no. 2010615318 (Russia), 2010.
  37. Guterman, V.E., Belenov, S.V., Lastovina, T.A., Fokina, E.P., Prutsakova, N.V., and Konstantinova, Y.B., Microstructure and electrochemically active surface area of PtM/C electrocatalysts, Russ. J. Electrochem., 2011, vol. 47, p. 933.
  38. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: I. Impact of Impurities, Measurement Protocols and Applied Corrections, J. Electrochem. Soc., 2015, vol. 162, p. 1144.
  39. Becknell, N., Kang, Y., Chen, C., Resasco, J., Kornienko, N., Guo, J., Markovic, N.M., Somorjai, G.A., Stamenkovic, V.R., and Yang, P., Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-Ray Absorption Spectroscopy, J. Am. Chem. Soc., 2015, vol. 137, p. 15817.
  40. Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M., Chi, M., More, K.L., Li, Y., Markovic, N.M., Somorjai, G.A., et al., Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces, Science, 2014, vol. 343, p. 1339.
  41. Wyckoff, R.W.G., Crystal Structures, New York: Interscience, 1963.
  42. Volochaev, V.A., Belenov, S.V., Alekseenko, A.A., and Guterman, V.E., On the Possibilities of Recognizing the Architecture of Binary Pt–M nanoparticle, Nanotechnol. Russ., 2017, vol. 12, p. 227.
  43. Oezaslan, M. and Strasser, P., Activity of dealloyed PtCo and PtCu nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell, J. Power Sources, 2011, vol. 196, p. 5240.
  44. Oezaslan, M., Hasché, F., and Strasser, P., PtCu3, PtCu and Pt3Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media, J. Electrochem. Soc., 2012, vol. 159, p. B444.
  45. Cantane, D.A., Oliveira, F.E.R., Santos, S.F., and Lima, F.H.B., Synthesis of Pt-based hollow nanoparticles using carbon-supported CoPt and NiPt core–shell structures as templates: Electrocatalytic activity for the oxygen reduction reaction, Appl. Catal., B, 2013, vol. 136, p. 351.
  46. Mayrhofer, K.J.J., Strmcnik, D., Blizanac, B.B., Stamenkovic, V., Arenz, M., and Markovic, N.M., Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts, Electrochim. Acta, 2008, vol. 53, p. 3181.
  47. van der Vliet, D.F., Wang, C., Li, D., Paulikas, A.P., Greeley, J., Rankin, R.B., Strmcnik, D., Tripkovic, D., Markovic, N.M., and Stamenkovic, V.R., Unique Electrochemical Adsorption Properties of Pt-Skin Surfaces, Angew. Chem., Int. Ed., 2012, vol. 51, p. 3139.
  48. Rudi, S., Cui, C., Gan, L., and Strasser, P., Comparative Study of the Electrocatalytically Active Surface Areas (ECSAs) of Pt Alloy Nanoparticles Evaluated by Hupd and CO-Stripping Voltammetry, Electrocatalysis, 2014, vol. 5, p. 408.
  49. Shao-Horn, Y., Sheng, W.C., Chen, S., Ferreira, P.J., Holby, E.F., and Morgan, D., Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells, Top. Catal., 2007, vol. 46, p. 285.
  50. Colón-Mercado, H.R. and Popov, B.N., Stability of platinum based alloy cathode catalysts in PEM fuel cells, J. Power Sources, 2006, vol. 155, p. 253.
  51. Han, B., Carlton, C.E., Kongkanand, A., Kukreja, R.S., Theobald, B.R., Gan, L., O’Malley, R., Strasser, P., Wagner, F.T., and Shao-Horn, Y., Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells, Energy Environ. Sci., 2015, vol. 8, p. 258.