Examples



mdbootstrap.com



 
Статья
2018

Properties of Stimulated Emission of the РМ567 Dye in Pores of Anodized Aluminum Oxide


A. K. AimukhanovA. K. Aimukhanov, N. Kh. IbrayevN. Kh. Ibrayev, A. M. EsimbekA. M. Esimbek
Российский физический журнал
https://doi.org/10.1007/s11182-018-1266-0
Abstract / Full Text

Properties of the stimulated emission of the РМ567 dye in porous aluminum oxide are investigated. It is established that when РМ567 molecules are doped into aluminum oxide pores, a small part of dye molecules forms aggregates. The quantum yield of fluorescence of РМ567 in Al2O3 is Ф f = 0.85. The stimulated emission of РМ567 in the Al2O3 film is observed in the short-wavelength maximum of the fluorescence band. The threshold of the stimulated emission is 2 MW/cm2. The kinetics of the decay of stimulated emission is measured. It is demonstrated that low-Q lasing of the stimulated emission of РМ567 in the film with Q ≥ 1·102 is caused by the fact that the geometry of rays in pores does not correspond to that of complete internal reflection, and hence, the radiative losses increase. The efficiency of lasing of РМ567 in Al2O3 is 0.3%.

Author information
  • E. A. Buketov Karaganda State University, Karaganda, KazakhstanA. K. Aimukhanov, N. Kh. Ibrayev & A. M. Esimbek
References
  1. V. B. Braginskii, M. L. Gorodetskyii, and V. S. Il’chenko, Usp. Fiz. Nauk, 160, 157–159 (1990).
  2. V. V. Sherstnev, A. Krier, A. M. Monakhov, and G. Hil, Electron. Lett., 39, 916–917 (2003).
  3. J. W. Diggle, T. C. Downie, and C. W. Coulding, Chem. Rev., 69, 365–405 (1969).
  4. Z. L. Zhang, H. R. Zheng, J. Dong, et al., Sci. China-Phys. Mech. Astron., 55, No. 5, 767–771 (2012).
  5. A. Moadhena, H. Elhouicheta, L. Nosovab, and M. Oueslatia, J. Lumin., 126, 789–794 (2007).
  6. A. Moadhen, H. Elhouichet, L. Nosova, and M. Oueslati, Phys. Status Solidi C, 4, No. 6, 2170–2174 (2007).
  7. A. V. Kukhta, G. G. Gorokh, E. E. Kolesnik, et al., Surf. Sci., 507, 593–597 (2002).
  8. T. Inada, N. Uno, T. Kato, and Y. Iwamoto, J. Mater. Res., 20, No.1, 114–120 (2005).
  9. G. V. Mayer, T. N. Kopylova, V. A. Svetlichnyi, et al., Kvant. Elektr., 37, No. 1, 53–59 (2007).
  10. E. T. Knobbe, B. Dunn, P. D. Fuqua, and F. Nishida, Appl. Opt., 29, 2729–2733 (1990).
  11. N. Kh. Ibrayev and A. K. Zeinidenov, Laser Phys. Lett., 11, No. 11, 1–4 (2014).
  12. N. Kh. Ibrayev, A. K. Zeinidenov, A. K. Aimukhanov, and K. S. Napolskii, Quantum Electron., 45, 663–667 (2014).
  13. A. A. Starovoytov, T. A. Vartanyan, V. I. Belotitskii, et al., in: Proc. Int. Conf. Days on Diffraction, St. Petersburg (2016), pp. 402–405.
  14. M. V. Bondar and O. V. Przhonskaya, Quantum Electron., 25, No. 9, 775–778 (1998).
  15. K. Nielsch, J. Choi, K. Schwirn, et al., Nano Lett., 2, 677–680 (2002).
  16. J. C. De Mello, H. F. Wittmann, and R. H. Friend, Adv. Mater., 9, 230–232 (1997).