Статья
2017

Synthesis of palladium–polypyrrole nanocomposite and its electrocatalytic properties in the oxidation of formaldehyde


K. V. Gor’kov K. V. Gor’kov , E. V. Zolotukhina E. V. Zolotukhina , E. R. Mustafina E. R. Mustafina , M. A. Vorotyntsev M. A. Vorotyntsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517010074
Abstract / Full Text

Three alternative methods were developed for the synthesis of modifying palladium–polypyrrole layers on the surface of an inert electrode. Their electrocatalytic activity toward formaldehyde under inert atmosphere was checked. All the suggested methods are one-stage and allow synthesis of a film on the electrode surface from a solution containing a palladium salt and pyrrole in the absence of other active reagents. The electrochemical methods (potentiodynamic and double cathodic and anodic pulses techniques) in an aqueous medium give films with poorly reproducible electrocatalytic properties, while the chemical redox synthesis affords films with reproducibly high electroactivity toward methylene glycolate.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    K. V. Gor’kov, E. V. Zolotukhina & M. A. Vorotyntsev

  • Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, Moscow, 119992, Russia

    K. V. Gor’kov, E. V. Zolotukhina, E. R. Mustafina & M. A. Vorotyntsev

  • Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia

    E. V. Zolotukhina & M. A. Vorotyntsev

  • Institute of Molecular Chemistry, Université de Bourgogne, Dijon, France

    M. A. Vorotyntsev

References
  1. Zhou, Z.-L., Kang, T.-F., Zhang, Y., and Cheng, S.-Y., Microchim. Acta, 2009, vol. 164, p. 133.
  2. Herschkovitz, Y., Eshkenazi, I., Campbell, C.E., and Rishpon, J., J. Electroanal. Chem., 2000, vol. 491, p. 182.
  3. Korpan, Y.I., Gonchar, M.V., Sibirny, A.A., Martelet, C., El’skaya, A.V., Gibson, T.D., and Soldatkin, A.P., Biosens. Bioelectron., 2000, vol. 15, p. 77.
  4. Wang, J., Pedrero, M., and Cai, X., Analyst, 1995, vol. 120, p. 1969.
  5. Yi, Q., Niu, F., and Yu, W., Thin Solid Films, 2011, vol. 519, p. 3155.
  6. Zhang, Y., Zhang, M., Cai, Z., Chen, M., and Cheng, F., Electrochim. Acta, 2012, vol. 68, p. 172.
  7. Ejaz, A., Ahmed, M.S., and Jeon, S., J. Electrochem. Soc., 2016, vol. 163, p. B163.
  8. Metters, J.P., Tan, F., and Banks, C.E., J. Solid State Electrochem., 2013, vol. 17, p. 1553.
  9. Niu, F. and Yi, Q., Rare Met., 2011, vol. 30, p. 102.
  10. Li, J., Liu, H., Cheng, X., Chen, Q., Xin, Y., Ma, Z., Xu, W., Ma, J., and Ren, N., Chem. Eng. J., 2013, vol. 225, p. 489.
  11. Kondratiev, V.V., Babkova, T.A., and Eliseeva, S.N., Russ. J. Electrochem., 2012, vol. 48, p. 205.
  12. Shi, W., Liu, C., Song, Y., Lin, N., Zhou, S., and Cai, X., Biosens. Bioelectron., 2012, vol. 38, p. 100.
  13. Rao, C.R.K. and Trivedi, D.C., Catal. Commun., 2006, vol. 7, p. 662.
  14. Harish, S., Mathiyarasu, J., Phani, K.L.N., and Yegnaraman, V., Catal. Lett., 2009, vol. 128, p. 197.
  15. Vasilyeva, S., Vorotyntsev, M., Bezverkhyy, I., Lesniewska, E., Heintz, O., and Chassagnon, R., J. Phys. Chem. C, 2008, vol. 112, p. 19878.
  16. Zinovyeva, V., Vorotyntsev, M., Bezverkhyy, I., Chaumont, D., and Hierso, J.-C., Adv. Funct. Mater., 2011, vol. 21, p. 1064.
  17. Hamasaki, H., Fukui, N., Fujii, S., Yusa, S., and Nakamura, Y., Colloid Polym. Sci., 2013, vol. 291, p. 223.
  18. Behniafar, H. and Malekshahinezhad, K., Colloid Polym. Sci., 2014, vol. 292, p. 2083.
  19. Mahmoudian, M.R., Alias, Y., and Basirun, W.J., MengWoi, P., Jamali-Sheini, F., Sookhakian, M., and Silakhori, M., J. Electroanal. Chem., 2015, vol. 751, p. 30.
  20. Prodromidis, M.I., Zahran, E.M., Tzakos, A.G., and Bachas, L.G., Int. J. Hydrogen Energy, 2015, vol. 40, p. 6745.
  21. Zolotukhina, E.V., Vorotyntsev, M.A., Zinovyeva, V.A., Bezverkhyy, I.S., Konev, D.V., Antipov, E.M., and Aldoshin, S.M., Dokl. Phys. Chem., 2013, vol. 449, p. 63.
  22. Sun, W., Lu, X., Tong, Y., Lei, J., Nie, G., and Wang, C., J. Mater. Chem. A, 2014, vol. 2, p. 6740.
  23. Fujii, S., Matsuzawa, S., Nakamura, Y., Ohtaka, A., Teratani, T., Akamatsu, K., Tsuruoka, T., and Nawafune, N., Langmuir, 2010, vol. 26, p. 6230.
  24. Talagaeva, N.V., Zolotukhina, E.V., Bezverkhyy, I., Konev, D.V., Lacroute, Y., Maksimova, E.Yu., Koryakin, S.L., and Vorotyntsev, M.A., J. Solid State Electrochem., 2015, vol. 19, p. 2701.
  25. Zolotukhina, E.V., Bezverkhyy, I.S., and Vorotyntsev, M.A., Electrochim. Acta, 2014, vol. 122, p. 247.
  26. Vorotyntsev, M.A., Zinovyeva, V.A., and Konev, D.V., Electropolymerization, Weinheim: Wiley-VCH, 2010, pp. 27–50.
  27. Magdesieva, T.V., Nikitin, O.M., Levitsky, O.A., Zinovyeva, V.A., Bezverkhyy, I., Zolotukhina, E.V., and Vorotyntsev, M.A., J. Mol. Catal. A: Chem., 2012, vols. 353–354, p. 50.
  28. Magdesieva, T.V., Nikitin, O.M., Zolotukhina, E.V., Zinovieva, V.A., and Vorotyntsev, M.A., Mendeleev Commun., 2012, vol. 22, p. 305.
  29. Magdesieva, T.V., Nikitin, O.M., Zolotukhina, E.V., and Vorotyntsev, M.A., Electrochim. Acta, 2014, vol. 122, p. 289.
  30. Batista, E.A. and Iwasita, T., Langmuir, 2006, vol. 22, p. 7912.
  31. Buck, R.P. and Griffith, L.R., J. Electrochem. Soc., 1962, vol. 109, p. 1005.
  32. Safavi, A., Maleki, N., Farjami, F., and Farjami, E., J. Electroanal. Chem., 2009, vol. 626, p. 75.
  33. Gor'kov, K.V., Zolotukhina, E.V., Mustafina, E.R., Vorotyntsev, M.A., Antipov, E.M., and Aldoshin, S.M., Dokl. Phys. Chem., 2016, vol. 467, p. 37.
  34. Jeong, M.-C., Pyun, C.H., and Yea, I.H., J. Electrochem. Soc., 1993, vol. 140, p. 1986.