Статья
2017

Polarization of the contact between fluorine-conducting solid electrolyte and metal alloys


M. S. Turaeva M. S. Turaeva , M. M. Urchukova M. M. Urchukova , I. V. Tarasenkova I. V. Tarasenkova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517060167
Abstract / Full Text

The kinetics of low-sized phase formation on polarization of the interface between LaF3:Eu2+ and Pb–Sn, Sn–Bi, and Sb–Bi alloys is studied by the potentiostatic and linear voltammetry methods. The analysis of anodic transients shows that the new phase formation involving fluoride ions from the solid electrolyte proceeds by the mechanism of instantaneous two-dimensional or three-dimensional nucleation. Comparison of calculated and experimental transients describing the instantaneous nucleation with either two-dimensional growth on the I/I m vs. t/t m coordinates or three-dimensional growth on the I 2/I 2 m vs. t/t m coordinates shows adequate agreement between the model and the initial regions of experimental curves. The properties of phases formed depend on the alloy composition and the polarization conditions as well as on the energy of interaction between components in the alloy and in the new phase.

Author information
  • Agrophysical Institute, St. Petersburg, Russia

    M. S. Turaeva & I. V. Tarasenkova

  • NTF “Volta,”, St. Petersburg, Russia

    M. M. Urchukova

References
  1. Turaeva, M.S., Lyalin, O.O., and Vasilevskii, V.L., Russ. J. Electrochem., 1992, vol. 28, p. 1499.
  2. Turaeva, M.S. and Tarasenkova, I.V., Russ. J. Electrochem., 2011, vol. 47, p. 643.
  3. Turaeva, M.S., Tarasenkova, I.V., Lyalin, O.O., and Vasilevskii, V.L., Russ. J. Electrochem., 1993, vol. 29, p. 1305.
  4. Turaeva, M.S., Pegova, I.A., Urchukova, M.M., and Murin, I.V., Russ. J. Electrochem., 2007, vol. 43, p. 418.
  5. Turaeva, M.S., Tarasenkova, I.V., Sorokin, N.I., Urchukova, M.M., and Murin, I.V., Russ. J. Electrochem., 2015, vol. 51, p. 429.
  6. Turaeva, M.S. and Pegova, I.A., Russ. Appl. Chem., 2005, vol. 78, p. 259.
  7. Bokris, J.O’M. and Damjanovic, I.A., in Modern Aspects of Electrochemistry, vol. 3, Bockris, J.O’M. and Conway, B.E., Eds., London Batterworths, 1964 (translated into Russian).
  8. Vetter, K.J., Elektrochemische Kinetics, Berlin Springer, 1961 (translated into Russian).
  9. Harrison J.A. and Thirsk, H.A., in Electroanalytical Chemistry, vol. 5, A.J. Bard, Ed., New York: Marcel Dekker, 1971, p. 67.
  10. Gamburg, Yu.D., Elektrokhimicheskaya kristallizatsiya metallov i splavov (Electrochemical Crystallization of Metals and Alloys) Moscow: Yanus-K, 1997.
  11. Grubac, Z. and Metikos-Hukovic, M., Electrochim. Acta, 1998, vol. 43, p. 3175.
  12. Schultze, J.W., Lohrengel, M.M., and Ross, D., Electrochim. Acta, 1983, vol. 28, p. 973.
  13. Simon, W., Gonnisen, D., and Hubin, A., J. Electroanal. Chem., 1997, vol. 433, p. 141.
  14. Milchev, A., Electrocrystallization. Fundamentals of Nucleation and Growth, New York Kluwer Academic, 2002.
  15. Budevski, E., Staikov, G., and Lorenz, W.J., Electrochim. Acta, 2000, vol. 45, p. 2559.
  16. Galus, Z., Teoretyczne Podstawy Electroanalizy Chemiczne, Warszawa Panstwowe Wydawnictwo Naukowe, 1971 (translated into Russian).
  17. Kondrashin, V.Yu. and Marshakov, I.K., Vestnik VGU, Ser. Khim. Biol., 2000, p. 55.
  18. Marshakov, A.I., Pchel’nikov, A.P., and Losev, V.V., Elektrokhimiya, 1983, vol. 19, p. 356.
  19. Brainina, N.Z., Neiman, E.Ya., and Slepushkin, V.V., Inversionnye elektroanaliticheskie metody (Inversion Electrochemical Methods), Moscow Khimiya, 1988.
  20. Pangarov, N., Electrochim. Acta, 1983, vol. 28, p. 763.
  21. Macdonald, D.D., Transient Techniques in Electrochemistry, New York Plenum, 1981.
  22. Calandra, A.J., de Tacconi, N.R., Pereiro, R., and Arvia, A.J., Electrochim. Acta, 1974, vol. 19, p. 901.
  23. Scharifker, B. and Hills, G., Electrochim. Acta, 1983, vol. 28, p. 879.
  24. Scharifker, B.R., J. Electroanal. Chem., 1998, vol. 458, p. 253.
  25. Heerman, L. and Tarallo, A., J. Electroanal. Chem., 1998, vol. 470, p. 70.