Статья
2018

Morphology and Transport Properties of Hybrid Materials Based on Perfluorinated Membranes, Polyaniline, and Platinum


I. V. Falina I. V. Falina , D. S. Popova D. S. Popova , N. A. Kononenko N. A. Kononenko
Российский электрохимический журнал
https://doi.org/10.1134/S102319351813013X
Abstract / Full Text

The transport properties and morphological characteristics of perfluorinated membranes after deposition of the layer of platinum dispersion on the surface are studied. The significant effect of preliminary modification of perfluorinated membraned with polyaniline on the diffusion permittivity of the composite and the morphology of the layer of platinum dispersion is determined. Testing the composites as proton conductors with a catalytic layer on the surface in an air–hydrogen fuel cell has shown the effect of the asymmetry of the electrochemical characteristics of the membrane–electrode assembly at various orientations of the layer of platinum dispersion towards hydrogen and air flows. A higher catalytic activity of the composite membranes in the oxygen reduction reaction is determined in the case platinum dispersion is deposited onto the membrane preliminarily modified with polyaniline.

Author information
  • Kuban State University, Krasnodar, 350040, Russia

    I. V. Falina, D. S. Popova & N. A. Kononenko

References
  1. Safronova, E.Yu., Volkov, V.I., and Yaroslavtsev, A.B., Ion mobility and conductivity of hybrid ion-exchange membranes incorporating inorganic nanoparticles, Solid State Ionics, 2011, vol. 188, p. 129.
  2. Amirinejad, M., Madaeni, S.S., Rafiee, E., and Amirinejad, S., Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells, J. Membr. Sci., 2011, vol. 377, p. 89.
  3. Gerasimova, E., Safronova, E., Ukshe, A., Dobrovolsky, Yu., and Yaroslavtsev, A., Electrocatalytic and transport properties of hybrid Nafion membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells, Chem. Eng. J., 2016, vol. 305, p. 121.
  4. Yang, J., Shen, P.K., Varcoe, J., and Wei, Z., Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity, J. Power Sources, 2009, vol. 189, p. 1016.
  5. Lee, P.-C., Han, T.-H., Kim, D.O., Lee, J.-H., Kang, S.-J., Chung, C.-H., Lee, Y., Cho, S.M., Choi, H.-G., Kim, T., Lee, E., and Nam, J.-D., In situ formation of platinum nanoparticles in Nafion recast film for catalyst-incorporated ion-exchange membrane in fuel cell applications, J. Membr. Sci., 2008, vol. 322, p. 441.
  6. Yang, H.N., Lee, D.C., Park, S.H., and Kim, W.J., Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC, J. Membr. Sci., 2013, vol. 443, p. 210.
  7. Kayumov, R.R., Sanginov, E.A., Zolotukhina, E.V., Gerasimova, E.V., Bukun, N.G., Ukshe, A.E., and Dobrovol’skii, Yu.A., Self-humidifying nanocomposite membrane Nafion/Pt for low-temperature solid polymer fuel cells, Al’tern. Energ. Ekol., 2013, no. 13 (135), p. 40.
  8. Sode, A., Ingle, N.J.C., McCormick, M., Bizzotto, D., Gyenge, E., Ye, S., Knights, S., and Wilkinson, D.P., Controlling the deposition of Pt nanoparticles within the surface region of Nafion, J. Membr. Sci., 2011, vol. 376, p. 162.
  9. Paul, D.K., Fraser, A., and Karan, K., Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: conductivity of adsorbed Nafion films, Electrochem. Commun., 2011, vol. 13, p. 774.
  10. Yohannes, W., Belenov, S.V., Guterman, V.E., Skibina, L.M., Volotchaev, V.A., and Lyanguzov, N.V., Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid, J. Appl. Electrochem., 2015, vol. 45, no. 6, p. 623.
  11. Gavrilov, N., Dašić-Tomić, M., Pašti, I., Ćirić-Marjanović, G., and Mentus, S., Carbonized polyaniline nanotubes/nanosheets-supported Pt nanoparticles: synthesis, characterization and electrocatalysis, Mater. Lett., 2011, vol. 65, p. 962.
  12. Jayasree, R., Mohanraju, K., and Cindrella, L., Synthesis of platinum-polyaniline composite, its evaluation as a performance boosting interphase in the electrode assembly of proton exchange membrane fuel cell, Appl. Surf. Sci., 2013, vol. 265, p. 78.
  13. Loza, N.V., Dolgopolov, S.V., Kononenko, N.A., Andreeva, M.A., and Korshikova, Yu.S., Effect of surface modification of perfluorinated membranes with polyaniline on their polarization behavior, Russ. J. Electrochem., 2015, vol. 51, no. 6, p. 538.
  14. Kononenko, N.A., Loza, N.V., Shkirskaya, S.A., Falina, I.V., and Khanukaeva, D.Yu., Influence of conditions of polyaniline synthesis in perfluorinated membrane on electrotransport properties and surface morphology of composites, J. Solid State Electrochem., 2015, vol. 19, p. 2623.
  15. Loza, N.V., Falina, I.V., Popova, D.S., and Kononenko, N.A., Influence of the polyaniline template synthesis conditions on its distribution in perfluorinated membrane, Sorbtsionnye Khromatogr. Protsessy, 2016, no. 5 (16), p. 663.
  16. Berezina, N.P., Chernyaeva, M.A., Kononenko, N.A. and Dolgopolov, S.V., Hybrid materials based on MF-4SK perfluorinated, sulfonated cation-exchange membranes and platinum, Petrol. Chem., 2011, vol. 51, no. 7, p. 502.
  17. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Characterization of ion-exchange membrane materials: properties vs structure, Adv. Colloid Interface Sci., 2008, vol. 139, p. 3.
  18. Falina, I.V. and Berezina, N.P., Diffusion of solutions in the course of the matrix synthesis of composite membranes MF-4SC–polyaniline and their transport properties, Polym. Sci., Ser. B, 2010, vol. 52, nos. 3–4, p. 244.
  19. Nagashree, K.L. and Ahmed, M.F., Electrocatalytic oxidation of methanol on Pt modified polyaniline in alkaline medium, Synth. Met., 2008, vol. 158, p. 610.
  20. Nakano, H., Tachibana, Y., and Kuwabata, S., Photodeposition of Pt on composite films of Nafion and conducting polymer and O2 reduction using the composite film-coated electrode, Electrochim. Acta, 2004, vol. 50, p. 749.