Статья
2022

A High-Performance Self-Reinforced PEO-Based Blend Solid Electrolyte Membrane for Solid-State Lithium Ion Batteries


 Chengbin Li Chengbin Li , Hongyun Yue Hongyun Yue , Qiuxian Wang Qiuxian Wang , Shuting Yang Shuting Yang
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522040085
Abstract / Full Text

The application of lithium-ion batteries is increasing, but the safety problems of traditional liquid lithium-ion batteries have not been fully resolved. Design and manufacture of solid electrolytes can thoroughly solve the problems. A self-reinforced poly(ethylene oxide) based blend solid electrolyte (PEO-BSPE) membrane was designed and prepared successfully by in-situ polymerization of ethoxylated trimethylolpropane triacrylate (ETPTA) in PEO electrolyte matrix under UV light to form a high-strength three-dimensional network structure. XRD and FESEM analyses proved that PEO-BSPE membranes were amorphous, smooth and flexible. The tensile strength of PEO-BSPE was 20 times higher than that of PEO-SPE film. PEO-BSPE also had good safety and low glass transition temperature. The ionic conductivity of PEO-BSPE at 55°C increased to 1.3 × 10–4 S cm–1. The electrochemical stability window of PEO-BSPE was 5.6 V. The solid-state battery was assembled with PEO-BSPE. The solid-state battery (LiFePO4/PEO-BSPE/Li) had good cycle stability, low interface impedance (189 Ω cm–2), high coulombic efficiency (>98%), high average specific discharge capacity (>135 mA h g–1 at 0.1 C) and excellent C-rate performance at 55°C. Hence the PEO-BSPE membrane is a very hopeful candidate for applying in all-solid-state lithium battery.

Author information
  • College of Cable Engineering, Henan Institute of Technology, 453003, Xinxiang, Henan, China

    Chengbin Li

  • National and Local Joint Engineering Laboratory of Motive Power and Key Materials, 453007, Xinxiang, Henan, China

    Chengbin Li, Hongyun Yue & Shuting Yang

  • Henan Key Laboratory of Wire and Cable Structures and Materials, 453003, Xinxiang, Henan, China

    Chengbin Li

  • Xinxiang Key Laboratory of Cable Flame Retardant and Fire Resistance Research and Testing, 453003, Xinxiang, Henan, China

    Chengbin Li

  • School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, China

    Hongyun Yue & Shuting Yang

  • Henan (Xinxiang) Battery Research Institute, 453000, Xinxiang, Henan, China

    Qiuxian Wang

References
  1. Zheng, F., Kotobuki, M., and Song, S., Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 2018, vol. 389, p. 198.
  2. Xue, Z., He, D., and Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater Chem. A, 2015, vol. 3, no. 38, p. 19218.
  3. Koduru, H.K., Scarpelli, F., and Marinov, Y.G., Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: microstructural, thermo-mechanical and conductivity properties, Ionics, 2018, vol. 24, p. 3459.
  4. Stephan, A.M., Natarajan, A.L., and Murugan, R., Sisal-derived activated carbons for cost-effective lithium–sulfur batteries, RSC Adv., 2016, vol. 6, p. 13772.
  5. Nair, J.R., Bella, F., Angulakshmi, N., Stephan, A.M., and Gerbaldi, C., Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries, Energy Storage Mater., 2016, vol. 3, p. 69.
  6. Cecil, K.K., Hector, F.G., and Steven, L.S., End-to-end and side-by-side alignment of short octahedral molecular sieve (OMS-2) nanorods into long microyarn superarchitectures and highly flexible membranes, Nano-Struct. Nano-Objects, 2018, vol. 14, p. 49.
  7. Talam, E.K., Laura, A., Peter, K., John, M., Cecil, K.K., and Steven, L.S., Highly microporous Parinari Curatellifolia carbon nanomaterials for supercapacitors, Nano-Struct. Nano-Objects, 2020, vol. 22, p. 100445.
  8. Kranz, S., Kranz, T., and Jaegermann, A.G., Is the solid electrolyte interphase in lithium-ion batteries really a solid electrolyte? Transport experiments on lithium bis(oxalato)borate-based model interphases, J. Power Sources, 2019, vol. 418, p. 138.
  9. Henschel, J., Peschel, C., and Florian, G., Reaction product analysis of the most active “inactive” material in lithium-ion batteries-the electrolyte. II: battery operation and additive impact, Chem. Mater., 2019, vol. 31, no. 24, p. 9977.
  10. Stenzel, Y.P., Boerner, M., Preibisch, Y., et al., Thermal profiling of lithium ion battery electrodes at different states of charge and aging conditions, J. Power Sources, 2019, vol. 433, p. 226709-1.
  11. Anh, L.M. and Kim, D., Solid electrolyte membrane prepared from poly(arylene ether sulfone)-g-poly(ethylene glycol) for lithium secondary battery, ACS Appl. Energy Mater., 2019, vol. 2, p. 2585.
  12. Maheshwaran, C., Kanchan, D.K., and Gohel, K., Effect of Mg(CF3SO3)2 concentration on structural and electrochemical properties of ionic liquid incorporated polymer electrolyte membranes, J. Solid State Electron., 2020, vol. 24, p. 655.
  13. Gohel, K. and Kanchan, D.K., Ionic conductivity and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with LiClO4 salt, J. Adv. Dielectr., 2018, vol. 08, p. 1850005.
  14. Li, Z., Sha, W.X., and Guo, X., Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability, ACS Appl. Mater. Int., 2019, vol. 11, no. 30, p. 26920.
  15. Pantyukhina, M.I., Plaksin, S.V., Saetova, N.S., and Raskovalov, A.A., New solid electrolyte Li8 – xZr1 – xTaxO6 (x = 0–0.5) for lithium power sources, Russ. J. Electrochem., 2019, vol. 55, no. 12, p. 1269.
  16. Bhute, M.V. and Kondawar, S.B., Electrospun poly(vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium ion battery, Solid State Ionics, 2019, vol. 333, p. 38.
  17. Wright, P., Recent trends in polymer electrolytes based on poly(ethylene oxide), J. Macromol. Sci. A, 1989, vol. 26, p. 519.
  18. Volel, M. and Armand, M., Influence of sample history on the morphology and transport properties of PEO-lithium salt complexes, Macromolecules, 2004, vol. 37, no. 22, p. 8373.
  19. Yi, S., Xu, T., and Li, L., Fast ion conductor modified double-polymer (PVDF and PEO) matrix electrolyte for solid lithium-ion batteries, Solid State Ionics, 2020, vol. 355, p. 115419.
  20. Pritam Arya, A. and Sharma, A.L., Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis, Ionics, 2020, vol. 26, p. 745.
  21. Lee, J., Howell, T., and Rottmayer, M., Free-standing PEO/LiTFSI/LAGP composite electrolytemembranes for applications to flexible solid-state lithium-based batteries, J. Electrochem. Soc., 2019, vol. 166, p. A416.
  22. Mathew, D.E., Gopi, S., and Kathiresan, M., Influence of MOF ligands on the electrochemical and interfacial properties of PEO-based electrolytes for all-solid-state lithium batteries, Electrochim. Acta, 2019, vol. 319, p. 189.
  23. Suriyakumar, S., Madasamy, K., Natarajan, A.L., Murugavel, K., Nahm, K.S., Walkowiak, M., Wasiński, K., PóRolniczak, P., and Stephan, A.M., Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks, RSC Adv., 2016, vol. 6, p. 97180.
  24. Sundaramahalingam, K., Muthuvinayagam, M., and Nallamuthu, N., AC impedance analysis of lithium ion based PEO:PVP solid polymer blend electrolytes, Polym. Sci. Ser. A, 2019, vol. 61, p. 565.
  25. Wang, S., Zeng, Q., and Wang, A., Constructing stable ordered ion channels for a solid electrolyte membrane with high ionic conductivity by combining the advantages of liquid crystal and ionic liquid, J. Mater Chem. A, 2019, vol. 7, p. 1069.
  26. Koizumi, Y., Mori, D., and Taminato, S., Lithium-stable NASICON-type lithium-ion conducting solid electrolyte film coated with a polymer electrolyte, Solid State Ionics, 2019, vol. 337, p. 101.
  27. Patla, S.K., Mukhopadhyay, M., and Ray, R., Ion specificity towards structure-property correlation of poly (ethylene oxide) [PEO]-NH4I and PEO-KBr composite solid polymer electrolyte, Ionics, 2019, vol. 25, p. 627.
  28. George, S.C., Thomas, S., and Ninan, K.N., Molecular transport of aromatic hydrocarbons through crosslinked styrene-butadiene rubber membranes, Polymer, 1996, vol. 37, p. 5839.
  29. Mathew, V.S., Sinturel, C., George, S.C., and Thomas, S., Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties, J. Mater. Sci., 2010, vol. 45, p. 1769.
  30. Fan, W., Li, N., and Zhang, X., A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries, Adv. Sci., 2018, vol. 5, p. 18005599.
  31. Evans, J., Vincent, C.A., and Bruce, P.G., Electrochemical measurement of transference numbers in polymer electrolytes, Polymer, 1987, vol. 28, p. 2324.
  32. Li, C., Yue, H., Wang, Q., Li, J., Zhang, J., Dong, H., Yin, Y., and Yang, S., A novel composite solid polymer electrolyte based on copolymer P(LA-co-TMC) for all-solid-state lithium ionic batteries, Solid State Ionics, 2018, vol. 321, pp. 8–14.
  33. Ilhwan, K., Bong, K., and Seunghoon, N., Cross-linked poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) gel polymer electrolyte for flexible Li-ion battery integrated with organic light emitting diode (OLED), Materials, 2018, vol. 11, p. 543.
  34. Kim, S., Choi, K., and Cho, S., A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries, J. Mater Chem. A, 2014, vol. 2, no. 28, p. 10854.
  35. Turković, A., Radmanović, K., and Pucić, I., Impedance, IR, Raman spectroscopy and differential scanning calorimetry of nanocomposite (PEO)8ZnCl2 polyelectrolyte, Strojarstvo, 2002, vol. 44, p. 219.
  36. Chen, B., Huang, Z., and Chen, X., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery, Electrochim. Acta, 2016, vol. 210, p. 905.
  37. Rey, I., Lassègues, J.C., and Grondin, J., Infrared and Raman study of the PEO-LiTFSI polymer electrolyte, Electrochim. Acta, 1998, vol. 43, p. 1505.
  38. Pritam, A.A. and Sharma, A.L., Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis, Ionics, 2020, vol. 26, p. 745.
  39. Wu, X., Xin, S., and Seo, H., Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer, Solid State Ionics, 2011, vol. 18, p. 1.
  40. Polu, A.R., Rhee, H., and Kim, D.K., New solid polymer electrolytes (PEO20–LiTDI–SN) for lithium batteries: structural, thermal and ionic conductivity studies, J. Mater. Sci.-Mater. Electron., 2015, vol. 26, p. 8548.
  41. Takahashi Masaya, Tobishima Shin-ichi, Takei Koji, and Sakurai Yoji, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries, Solid State Ionics, 2002, vol. 148, p. 283.