Статья
2021

Germanium in Lithium-Ion and Sodium-Ion Batteries (A Review)


T. L. Kulova T. L. Kulova , A. M. Skundin A. M. Skundin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521110057
Abstract / Full Text

In recent decade, special interest is paid to germanium as potential material of negative electrodes in lithium-ion and, the more so, sodium-ion batteries. In the review, studies of lithium and sodium reversible insertion to different germanium–metal nanostructures as well as germanium-alloy-, germanium–compound-, and germanium–composite-based electrodes are overviewed. The review is mainly based on papers published after 2013.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    T. L. Kulova & A. M. Skundin

References
  1. St. John, M.R., Furgala, A.J., and Sammells, A.F., Thermodynamic Studies of Li–Ge Alloys: Application to Negative Electrodes for Molten Salt Batteries, J. Electrochem. Soc., 1982, vol. 129, p. 246. 2.
  2. Sangster, J. and Pelton, A.D., The Ge–Li (germanium–lithium) system, J. Phase Equil., 1997, vol. 18, p. 289.
  3. Morris, A.J., Grey, C.P., and Pickard, C.J., Thermodynamically stable lithium silicides and germanides from density functional theory calculations, Phys. Rev. B, 2014, vol. 90, article No. 054111.
  4. Graetz, J., Ahn, C.C., Yazami, R., and Fultz, B., Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities, J. Electrochem. Soc., 2004, vol. 151 p. A698.
  5. Chan, C.K., Zhang, X.F., and Cui, Y., High-Capacity Li Ion Battery Anodes Using Ge Nanowires, Nano Lett., 2008, vol. 8, p. 307.
  6. Laforge, B., Levan-Jodin, L., Salot, R., and Billard, A., Study of Germanium as Electrode in Thin-Film Battery, J. Electrochem. Soc., 2008, vol. 155, p. A181.
  7. Kim, Y., Hwang, H., Lawler, K., Martin, S.W., and Cho, J., Electrochemical behavior of Ge and GeX2 (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium, Electrochim. Acta, 2008, vol. 53, p. 5058.
  8. Yoon, S., Park, C.-M., and Sohn, H.-J., Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries, Electrochem. Solid-State Lett., 2008, vol. 11, p. A42.
  9. Baggetto, L., Hensen, J.M., and Notten, P.H.L., In situ X-ray absorption spectroscopy of germanium evaporated thin film electrodes, Electrochim. Acta, 2010, vol. 55, p. 7074.
  10. Lim, L.Y., Liu, N., Cui, Y., Toney, M.F., Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries, Chem. Mater., 2014, vol. 26, p. 3739.
  11. Grüttner, A., Nesper, R., von Schnering, H.G., Novel Metastable Germanium Modifications allo-Ge and 4H-Ge from Li7Ge12, Angew. Chem. Int. Ed. Engl., 1982, vol. 21, p. 912.
  12. Nesper, S., Structure and Chemical Bonding in Zintl-phases Containing Lithium, Progr. Solid State Chem., 1990, vol. 20, p. 1.
  13. Dupke, S., Langer, T., Pöttgen, R., Winter, M., and Eckert, H., Structural and dynamic characterization of Li12Si7 and Li12Ge7 using solid state NMR, Solid State Nuclear Magnetic Resonance, 2012, vol. 42, p. 17.
  14. Jung, H., Allan, P.K., Hu, Y.-Y., Borkiewicz, O.J., Wang, X.-L., Han, W.-Q., Du, L.-S., Pickard, C.J., Chupas, P.J., Chapman, K.W., Morris, A.J., and Grey, C.P., Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 1031.
  15. Hopf, V., Müller, W., und Schäfer, H., Die Struktur der Phase Li7Ge2, Z. Naturforsch., 1972, Bd 27 b, S. 1157.
  16. Baggetto, L. and Notten, P.H.L., Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study, J. Electrochem. Soc., 2009, vol. 156, p. A169.
  17. Goward, G.R., Taylor, N.J., Souza, D.C.S., and Nazar, L.F., The true crystal structure of Li17M4 (M = Ge, Sn, Pb)—revised from Li22M5, J. Alloys Comps, 2001, vol. 329, p. 82.
  18. Tang, W., Liu, Y., Peng, C., Hu, M.Y., Deng, X., Lin, M., Hu, J.Z., and Loh, K.P., Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System, J. Am. Chem. Soc., 2015, vol. 137, p. 2600.
  19. Loaiza, L.C., Louvain, N., Fraisse, B., Boulaoued, A., Iadecola, A., Johansson, P., Stievano, L., Seznec, V., and Monconduit, L., Electrochemical Lithiation of Ge: New Insights by Operando Spectroscopy and Diffraction, J. Phys. Chem. C, 2018, vol. 122, p. 3709.
  20. Lim, L.Y., Fan, S., Hng, H.H., and Toney, M.F., Storage Capacity and Cycling Stability in Ge Anodes: Relationship of Anode Structure and Cycling Rate, Adv. Energy Mater., 2015, vol. 5, article No. 1500599.
  21. Lim, L.Y., Fan, S., Hng, H.H., and Toney, M.F., Operando X-ray Studies of Crystalline Ge Anodes with Different Conductive Additives, J. Phys. Chem. C, 2015, vol. 119, p. 22772.
  22. Kamata, Y., High-k/Ge MOSFETs for future nanoelectronics, Mater. Today, 2008, vol. 11, iss. 1–2, p. 30.
  23. Chou, C.-Y. and Hwang, G.S., On the origin of the significant difference in lithiation behavior between silicon and germanium, J. Power Sources, 2014, vol. 263, p. 252.
  24. Liu, X.H., Liu, Y., Kushima, A., Zhang, S., Zhu, T., Li, J., and Huang, J.Y., In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures, Adv. Energy Mater., 2012, vol. 2, p. 722.
  25. Wu, S., Han, C., Iocozzia, J., Lu, M., Ge, R., Xu, R., and Lin, Z., Germanium-Based Nanomaterials for Rechargeable Batteries, Angew. Chem. Int. Ed., 2016, vol. 55, p. 7898
  26. Liu, Y., Zhang, S., and Zhu, T., Germanium-Based Electrode Materials for Lithium-Ion Batteries, ChemElectroChem, 2014, vol. 1, p. 706.
  27. Chia-Yun Chou, C.-Y. and Hwang, G.S., On the origin of anisotropic lithiation in crystalline silicon over germanium: A first principles study, Appl. Surf. Sci., 2014, vol. 323, p. 78.
  28. Baggetto, L., Keum, J.K., Browning, J.F., and Veith, G.M., Germanium as negative electrode material for sodium-ion batteries, Electrochem. Commun., 2013, vol. 34, p. 41.
  29. Wu, H., Liu, W., Zheng, L., Zhu, D., Du, N., Xiao, C., Su, L., and Wang, L., Facile Synthesis of Amorphous Ge Supported by Ni Nanopyramid Arrays as an Anode Material for Sodium-Ion Batteries, Chemistry Open, 2019, vol. 8, p. 298.
  30. Wang, Y., Wang, P., Zhao, D., Hu B., Du, Y., Xu, H., and Chang, K., Thermodynamic description of the Ge–Na and Ge–K systems using the CALPHAD approach supported by first-principles calculations, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, vol. 37, p. 72.
  31. Drits, M.E. and Zusman, L.L., Alloys of Alkaline and Alkaline Earth Metals, A Reference Book, Moscow: Metallurgiya, 1986.
  32. Abel, P.R., Lin, Y.-M., de Souza, T., Chou, C.-Y., Gupta, A., Goodenough, J.B., Hwang, G.S., Heller, A., and Mullins, C.B., Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material, J. Phys. Chem. C, 2013, vol. 117, p. 18885.
  33. Lu, X., Adkins, E.R., He, Y., Zhong, L., Luo, L., Mao, S.X., Wang, C.-M., and Korgel, B.A., Germanium as a Sodium-Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity, Chem. Mater., 2016, vol. 28, p. 1236.
  34. Moskalyk, R.R., Review of germanium processing worldwide, Minerals Engineering, 2004, vol. 17, p. 393.
  35. Nguyen, T.H. and Lee, M.S., A Review on Germanium Resources and its Extraction by Hydrometallurgical Method, Mineral Processing and Extractive Metallurgy Review, Online May 05, 2020.
  36. Zhang, L. and Xu, Z., A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes, J. Cleaner Production, 2018, vol. 202, p. 1001.
  37. Hao, J., Wang, Y., Guo, Q., Zhao, J., and Li, Y., Structural Strategies for Germanium-Based Anode Materials to Enhance Lithium Storage, Part. Part. Syst. Charact., 2019, vol. 36, p. 9.
  38. Liang, S., Cheng, Y.-J., Zhu, J., Xia, Y., and Müller-Buschbaum, P., A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes, Small Methods, 2020, Article No. 2000218
  39. Kennedy, T., Brandon, M., and Ryan, K.M., Advances in the Application of Silicon and Germanium Nanowires for High-Performance Lithium-Ion Batteries, Adv. Mater., 2016, vol. 28, p. 5696.
  40. Qin, J. and Cao, M., Multidimensional Germanium-Based Materials as Anodes for Lithium-Ion Batteries, Chem. Asian J., 2016, vol. 11, p.1169.
  41. Wu, X.-L., Guo, Y.-G., and Wan, L.-J., Rational design materials based on group IVA elements (Si, Ge, and Sn) for lithium-ion batteries, Chem. Asian J., 2013, vol. 8, p. 1948.
  42. Wei, W., Xu, J., Xu, M., Zhang, S., and Guo, L., Recent progress on Ge oxide anode materials for lithium-ion batteries. Sci. China Chem., 2018, vol. 61, p. 515.
  43. Liu, D., Liu, Z., Li, X., Xie, W., Wang, Q., Liu, Q., Fu, Q., and He, D., Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries, Small, 2017, vol. 13, p. 45.
  44. Tian, H., Xin, F., Wang, X., He, W., and Han, W., High-capacity group-IV elements (Si, Ge, Sn) based anodes for Lithium-ion Batteries, J. Materiomics, 2015, vol. 1, p. 153
  45. Hu, Z., Zhang, S., Zhang, C., and Cui, G., High performance germanium-based anode materials, Coord. Chem. Rev., 2016, vol. 326, p. 34.
  46. Liu, X., Wu, X.-Y., Chang, B., and Wang, K.-X., Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms, Energy Storage Mater., 2020, vol. 30, p. 146.
  47. Loaiza, L.C., Monconduit, L., and Seznec, V., Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism, Small, 2020, vol. 16, article No. 1905260.
  48. Lee, H., Kim, M.G., Choi, C.H., Sun, Y.-K., Yoon, C.S., and Cho, J., Surface-Stabilized Amorphous Germanium Nanoparticles for Lithium-Storage Material, J. Phys. Chem. B, 2005, vol. 109, p. 20719.
  49. Vaughn II, D.D. and Schaak, R.E., Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials, Chem. Soc. Rev., 2013, vol. 42, p. 2861.
  50. Ha, D.H., Ly, T., Caron, J.M., Zhang, H.T., Fritz, K.E., and Robinson, R.D., A general method for high-performance Li-ion battery electrodes from colloidal nanoparticles without the introduction of binders or conductive-carbon additives: the cases of MnS, Cu2–xS, and Ge, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 25053.
  51. Seng, K.H., Park, M.-H., Guo, Z.P., Liu, H.K., and Cho, J., Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery, Angew. Chem. Int. Ed., 2012, vol. 51, p. 5657.
  52. Wang, L., Bao, K., Lou, Z., Liang, G., and Zhou, Q., Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium-ion batteries, Dalton Trans., 2016, vol. 45, p. 2814.
  53. Kim, T.-H., Song, H.-K., and Kim, S., Production of germanium nanoparticles via laser pyrolysis for anode materials of lithium-ion batteries and sodium-ion batteries, Nanotechnology, 2019, vol. 30, Article No. 275603.
  54. Park, M.-H., Kim, K., Kim, J., and Cho, J., Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies, Adv. Mater., 2010, vol. 22, p. 415.
  55. Lin, N., Li, T., Han, Y., Zhang, Q., Xu, T., and Qian, Y., Mesoporous Hollow Ge Microspheres Prepared via Molten-Salt Metallothermic Reaction for High-Performance Li-Storage Anode, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 8399.
  56. Choi, S., Kim, J., Choi, N.-S., Kim, M.G., and Park, S., Cost-Effective Scalable Synthesis of Mesoporous Germanium Particles via a Redox-Transmetalation Reaction for High-Performance Energy Storage Devices, ACS Nano, 2015, vol. 9, p. 2203.
  57. Li, L., Seng, K. H., Feng, C., Liu, H. K., and Guo, Z., Synthesis of Hollow GeO2 Nanostructures, Transformation into Ge@C, and Lithium Storage Properties, J. Mater. Chem. A, 2013, vol. 1, p. 7666.
  58. Liu, X., Lin, N., Cai, W., Zhao, Y., Zhou, J., Liang, J., Zhu, Y., and Qian, Y., Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries, Dalton Trans., 2018, vol. 47, p. 7402.
  59. Yang, L.C., Gao, Q.S., Li, L., Tang, Y., and Wu, Y.P., Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction, Electrochem. Commun., 2010, vol. 12, p. 418.
  60. Klavetter, K.C., Wood, S.M., Lin, Y.M., Snider, J.L., Davy, N.C., Chockla, A.M., Romanovicz, D.K., Korgel, B.A., Lee, J.W., Heller, A., and Mullins, C.B., A high-rate germanium-particle slurry cast Li-ion anode with high coulombic efficiency and long cycle life, J. Power Sources, 2013, vol. 238, p. 123.
  61. Kim, C.H., Im, H.S., Cho, Y.J., Jung, C.S., Jang, D.M., Myung, Y., Kim, H.S., Back, S.H., Lim, Y.R., Lee, C.-W., Park, J., Song, M.S., and Cho, W.-I., High-yield gas-phase laser photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries, J. Phys. Chem. C, 2012, vol. 116, p. 26190.
  62. Pelosi, M., Tillard, M., and Zitoun, D., Ge nanoparticles by direct oxidation of Zintl alloys and their electrochemical behavior as anodes of Li-ion batteries, J. Nanopart. Res. 2013, vol. 15, p. 1872.
  63. Liang, W., Yang, H., Fan, F., Liu, Y., Liu, X.H., Huang, J.Y., Zhu, T., and Zhang, S., Tough Germanium Nanoparticles under Electrochemical Cycling, ACS Nano, 2013, vol. 7, p. 3427.
  64. Weker, J.N., Liu, N., Misra, S., Andrews, J.C., Cui, Y., and Toney, M.F., In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles, Energy Environ. Sci., 2014, vol. 7, p. 2771.
  65. Zhou, X., Li, T., Cui, Y., Meyerson, M.L., Mullins, C.B., Liu, Y., and Zhu, L., In Situ Focused Ion Beam-Scanning Electron Microscope Study of Crack and Nanopore Formation in Germanium Particle During (De)lithiation, ACS Appl. Energy Mater., 2019, vol. 2, p. 2441.
  66. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, vol. 3, p. 31.
  67. Wang, D. and Dai, H., Low-Temperature Synthesis of Single-Crystal Germanium Nanowires by Chemical Vapor Deposition, Angew. Chem. Int. Ed., 2002, vol. 41, p. 4783.
  68. Farbod, B., Cui, K., Kupsta, M., Kalisvaart, W.P., Memarzadeh, E., Kohandehghan, A., Zahiri, B., and Mitlin, D., Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes, J. Mater. Chem. A, 2014, vol. 2, p. 16770.
  69. Wang, D., Chang, Y.-L., Wang, Q., Cao, J., Farmer, D.B., Gordon, R.G., and Dai, H., Surface Chemistry and Electrical Properties of Germanium Nanowires, J. Am. Chem. Soc., 2004, vol. 126, p. 11602.
  70. Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T., and Huang, J.Y., Reversible Nanopore Formation in Ge Nanowires during Lithiation–Delithiation Cycling: An In Situ Transmission Electron Microscopy Study, Nano Lett., 2011, vol. 11, p. 3991.
  71. Mullane, E., Kennedy, T., Geaney, H., Dickinson, C., and Ryan, K.M., Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent–Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling, Chem. Mater., 2013, vol. 25, p. 1816.
  72. Kim, G.-T., Kennedy, T., Brandon, M., Geaney, H., Ryan, K.M., Passerini, S., and Appetecchi G.B., Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes, ACS Nano, 2017, vol. 11, p. 5933.
  73. Gu, M., Yang, H., Perea, D.E., Zhang, J.-G., Zhang, S., and Wang, C.-M., Bending-Induced Symmetry Breaking of Lithiation in Germanium Nanowires, Nano Lett., 2014, vol. 14, p. 4622.
  74. Pandres, E.P., Olson, J.Z., Schlenker, C.W., and Vincent, C. Holmberg, V.C., Germanium Nanowire Battery Electrodes with Engineered Surface-Binder Interactions Exhibit Improved Cycle Life and High Energy Density without Fluorinated Additives, ACS Appl. Energy Mater., 2019, vol. 2, p. 6200.
  75. Kennedy, T., Mullane, E., Geaney, H., Osiak, M., O’Dwyer, C., and Ryan, K.M., High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network, Nano Lett., 2014, vol. 14, p. 716.
  76. Chockla, A.M. and Korgel, B.A., Seeded germanium nanowire synthesis in solution, J. Mater. Chem., 2009, vol. 19, p. 996.
  77. Hanrath, T. and Korgel, B.A., Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals, J. Am. Chem. Soc., 2002, vol. 124, p. 14243991.
  78. Meshgi, M.A., Biswas, S., McNulty, D., O’Dwyer, C., Verni, G.A., O’Connell, J., Davitt, F., Letofsky-Papst, I., Poelt, P., Holmes, J.D., and Marschner, C., Rapid, Low-Temperature Synthesis of Germanium Nanowires from Oligosilylgermane Precursors, Chem. Mater., 2017, vol. 29, p. 4351.
  79. Silberstein, K.E., Lowe, M.A., Richards, B., Gao, J., Hanrath, T., and Abruña, H.D., Operando X-ray Scattering and Spectroscopic Analysis of Germanium Nanowire Anodes in Lithium Ion Batteries, Langmuir, 2015, vol. 31, p. 2028.
  80. Yuan, F.-W., Yang, H.-J., and Tuan, H.-Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. ACS Nano, 2012, vol. 6, p. 9932.
  81. Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A., Gavrilov, S.A., Trifonov, A.Y., Kulova, T.L., Kuz’mina, A.A., and Skundin, A.M., Electrochemical insertion of sodium into nanostructured materials based on germanium, Mend. Commun., 2018. vol. 28, p. 659.
  82. Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A., Gavrilov, S.A., Trifonov, A.Y., Kulova, T.L., Kuz’mina, A.A., and Skundin, A.M., Study of the Process of Reversible Insertion of Lithium into Nanostructured Materials Based on Germanium, Russ. J. Electrochem., 2018, vol. 54, p. 907.
  83. Gu, J., Collins, S.M., Carim, A.I., Hao, X., Bartlett, B.M., and Maldonado, S., Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid–liquid–solid process in water at ambient pressure and temperature for energy storage, Nano Lett., 2012, vol. 12, p. 4617.
  84. Carim, A.I., Collins, S.M., Foley, J.M., and Maldonado, S., Benchtop Electrochemical Liquid–Liquid–Solid Growth of Nanostructured Crystalline Germanium, J. Am. Chem. Soc., 2011, vol. 133, p. 13292.
  85. Fahrenkrug, E., Gu, J., Jeon, S., Veneman, P.A., Goldman, R.S., and Maldonado, S., Room-Temperature Epitaxial Electrodeposition of Single-Crystalline Germanium Nanowires at the Wafer Scale from an Aqueous Solution, Nano Lett., 2014, vol. 14, p. 847.
  86. Mahenderkar, N.K., Liu, Y.-C., Koza, J.A., and Switzer, J.A., Electrodeposited Germanium Nanowires, ACS Nano, 2014, vol. 8, p. 9524.
  87. Ma, L., Fahrenkrug, E., Gerber, E., Crowe, A.J., Venable, F., Bartlett, B.M., and Maldonado, S., High-Performance Polycrystalline Ge Microwire Film Anodes for Li Ion Batteries, ACS Energy Lett., 2017, vol. 2, p. 238.
  88. Zou, X., Ji, L., Pang, Z., Qian, X., and Lu, X., Continuous electrodeposition of silicon and germanium micro/nanowires from their oxides precursors in molten salt, J. Energy Chem., 2020, vol. 44, p. 147.
  89. Hao, J., Yang, Y., Zhao, J., Liu, X., Endres, F., Chi, C., Wang, B., Liu, X., and Li, Y., Ionic liquid electrodeposition of strain-released Germanium nanowires as stable anodes for lithium ion batteries, Nanoscale, 2017, vol. 9, p. 8481.
  90. Chi, C., Hao, J., Liu, X., Ma, X., Yang, Y., Liu, X., Endres, F., Zhao, J., and Li, Y., UV-assisted, Template-free Electrodeposition of Germanium Nanowire Cluster Arrays from an Ionic Liquid for Anodes in Lithium-ion batteries, New J. Chem., 2017, vol. 41, p. 15210.
  91. Al-Salman, R., Mallet, J., Molinari, M., Fricoteaux, P., Martineau, F., Troyon, M., El Abedin, S.Z., and Endres, F., Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6233.
  92. Yin, H., Xiao, W., Mao, X., Wei, W., Zhu, H., and Wang, D., Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl, Electrochim. Acta, 2013, vol. 102, p. 369.
  93. Rong, L., He, R., Wang, Z., Peng, J., Jin, X., and Chen, G.Z., Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2–NaCl, Electrochim. Acta, 2014, vol. 147, p. 352.
  94. Mullane, E., Kennedy, T., Geaney, H., and Ryan, K.M., A Rapid, Solvent-Free Protocol for the Synthesis of Germanium Nanowire Lithium-Ion Anodes with a Long Cycle Life and High Rate Capability, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 18800.
  95. Park, M.-H., Cho, Y.H., Kim, K., Kim, J., Liu, M., and Cho, J., Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries, Angew. Chem. Int. Ed., 2011, vol. 50, p. 9647.
  96. Liu, X., Hao, J., Liu, X., Chi, C., Li, N., Endres, F., Zhang, Y., Li, Y., and Zhao, J., Preparation of Ge nanotube arrays from an ionic liquid for lithium-ion battery anodes with improved cycling stability, Chem. Commun., 2015, vol. 51, p. 2064.
  97. Lee, K.T. and Cho, J., Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries, Nano Today, 2011, vol. 6, p. 28.
  98. Laforge, B., Levan-Jodin, L., Salot, R., and Billard, A., Study of Germanium as Electrode in Thin-Film Battery, J. Electrochem. Soc., 2008, vol. 155, p. A181.
  99. Susantyoko, R.A., Wang, X., Sun, L., Sasangka, W., Fitzgerald, E., and Zhang, Q., Influences of annealing on lithium-ion storage performance of thick germanium film anodes, Nano Energy, 2015, vol. 12, p. 521.
  100. Baggetto, L. and Notten, P.H.L., Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study, J. Electrochem. Soc., 2009, vol. 156, p. A169.
  101. Wang, X., Yang, A., and Xia, S., Fracture Toughness Characterization of Lithiated Germanium as an Anode Material for Lithium-Ion Batteries, J. Electrochem. Soc., 2016, vol. 163, p. A90.
  102. McGrath, L.M., Jones, J., Carey, E., and Rohan, J.F., Ionic Liquid Based Polymer Gel Electrolytes for Use with Germanium Thin Film Anodes in Lithium-Ion Batteries, ChemistryOpen, 2019, vol. 8, p. 1429.
  103. Jakomin, R., de Kersauson, M., El Kurdi, M., Largeau, L., Mauguin, O., Beaudoin, G., Sauvage, S., Ossikovski, R., Ndong, G., Chaigneau, M., Sagnes, I., and Boucaud, P., High quality tensile-strained n-doped germanium thin films grown on InGaAs buffer layers by metal-organic chemical vapor deposition, Appl. Phys. Lett., 2011, vol. 98, p. 91901.
  104. Altay, M.C. and Eroglu, S., Chemical vapor deposition of Ge thin films from solid GeO2 and C2H5OH, Thin Solid Films, 2019, vol. 677, p. 22.
  105. Miao, J., Wang, B., and Thompson, C.V., Kinetic Study of Lithiation-Induced Phase Transitions in Amorphous Germanium Thin Films, J. Electrochem. Soc., 2020, vol. 167, article No. 090557.
  106. Rudawski, N.G., Yates, B.R., Holzworth, M.R., Jones, K.S., Elliman, R.G., and Volinsky, A.A., Ion beam-mixed Ge electrodes for high-capacity Li rechargeable batteries, J. Power Sources, 2013, vol. 223, p. 336.
  107. Huang, Q., Bedell, S.W., Saenger, K.L., Copel, M., Deligianni, H., and Romankiw, L.T., Single-Crystalline Germanium Thin Films by Electrodeposition and Solid-Phase Epitaxy, Electrochem. Solid-State Lett., 2007, vol. 10, p. D124.
  108. Liu, L., Wang, X., Zhang, X., Zhang, X., and Chen S., Ionic liquid electrodeposition of Ge nano-film on Cu wire mesh as stable anodes for lithium-ion batteries, Ionics, 2020, vol. 26, p. 2225
  109. Chang, Y.-M., Lin, H.-W., Li, L.-J., and Chen, H.-Y., Two-dimensional materials as anodes for sodium-ion batteries, Materials Today Advances, 2020, vol. 6, article No. 100054
  110. Mortazavi, B., Dianat, A., Cuniberti, G., and Rabczuk, T., Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation, Electrochim. Acta, 2016, vol. 213, p. 865.
  111. Kulova, T.L. and Skundin, A.M., The Use of Phosphorus in Sodium-Ion Batteries (A Review), Russ. J. Electrochem., 2020, vol. 56, p. 1.
  112. Liu, X., Zhao, J., Hao J., Su, B.-L., and Li, Y., 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties, J. Mater. Chem. A, 2013, vol. 1, p. 15076.
  113. Liang, J., Li, X., Hou, Z., Zhang, T., Zhu, Y., Yan, X., and Qian, Y., Honeycomb-like Macro-Germanium as High-Capacity Anodes for Lithium-Ion Batteries with Good Cycling and Rate Performance, Chem. Mater., 2015, vol. 27, p. 4156.
  114. Zhang, C., Lin, Z., Yang, Z., Xiao, D., Hu, P., Xu, H., Duan, Y., Pang, S., Gu, L., and Cui, G., Hierarchically Designed Germanium Microcubes with High Initial Coulombic Efficiency toward Highly Reversible Lithium Storage, Chem. Mater., 2015, vol. 27, p. 2189.
  115. Yoon, T., Song, G., Harzandi, A.M., Ha, M., Choi, S., Shadman, S., Ryu, J., Bok, T., Park, S., and Kim, K.S., Intramolecular Deformation of Zeotype-borogermanate toward Three-dimensional Porous Germanium Anode for High-rate Lithium Storage, J. Mater. Chem. A, 2018, vol. 6, p. 15961.
  116. Jia, H., Kloepsch, R., He, X., Badillo, J.P., Gao, P., Fromm, O., Placke, T., and Winter, M., Reversible Storage of Lithium in Three-Dimensional Macroporous Germanium, Chem. Mater., 2014, vol. 26, p. 5683.
  117. Kwon, D., Ryu, J., Shin, M., Song, G., Hong, D., Kim, K.S., and Park, S., Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance, J. Power Sources, 2018, vol. 374, p. 217.
  118. Yu, Z., Meng, X., Hu, Y., Yin, M., Yang, P., and Li, H., Pulsed laser irradiation-assisted electrodeposition of germanium in ionic liquid: From amorphous film to polycrystalline branched structures, Mat. Res. Bull., 2017, vol. 93, p. 208.
  119. Chi, C., Hao, J., Yang, Y., Liu, S., Liu, X., Ma, X., Liu, X., Zhao, J., and Li, Y., Template-free growth of coral-like Ge nanorod bundles via UV-assisted ionic liquid electrodeposition, J. Mater. Sci.: Mater. Electronics, 2018, vol. 29, p. 14105.
  120. Lee, G.-H., Lee, S., Lee, C.W., Choi, C., and Kim, D.-W., Stable high-areal-capacity nanoarchitectured germanium anodes on three-dimensional current collectors for Li-ion microbatteries, J. Mater. Chem. A, 2016, vol. 4, p. 1060.
  121. Wang, J.Z., Du, N., Zhang, H., Yu, J.X., and Yang, D.R., Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Mater. Chem., 2012, vol. 22, p. 1511.
  122. Sun, X., Lu, X., Huang, S., Xi, L., Liu, L., Liu, B., Weng, Q., Zhang, L., and Schmidt, O.G., Reinforcing Germanium Electrode with Polymer Matrix Decoration for Long Cycle Life Rechargeable Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 38556.
  123. Yang, Q., Wang, Z., Xi, W., and He, G., Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries, Electrochem. Commun., 2019, vol. 101, p. 68.
  124. Yi, Z., Lin, N., Li, T., Han, Y., Li, Y., and Qian, Y., Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage, Nano Research, 2019, vol. 12, p.1824.
  125. Mishra, K., Liu, X.-C., Ke, F.-S., and Zhou, X.-D., Porous germanium enabled high areal capacity anode for lithium-ion batteries, Composites Part B: Engineering, 2019, vol. 163, p. 158.
  126. Tang, D., Yu, H., Zhao, J., Liu, W., Zhang, W., Miao, S., Qiao, Z.-A., Song, J., and Zhao, Z., Bottom-up synthesis of mesoporous germanium as anodes for lithium-ion batteries, J. Colloid Interface Sci., 2020, vol. 561, p. 494.
  127. Yang, L.C., Gao, Q.S., Li, L., Tang, Y., and Wu, Y.P., Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction, Electrochem. Commun., 2010, vol. 12, p. 418.
  128. Choi, S., Cho, Y.-G., Kim, J., Choi, N.-S., Song, H.-K., Wang, G., and Park, S., Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range, Small, 2017, vol. 13, article No. 1603045
  129. Eliot, R.B., Constitution of Binary Alloys, First Suppliment, McGrow-Hill Book Company, N-Y etc., 1965, p. 490.
  130. State diagrams of Double Metal Systems, A Handbook, vol. 2, Lyakishev, N.P., Moscow. Mashinostroenie, 1997, p. 202.
  131. Lee, H. and Cho, J., Sn78Ge22@Carbon Core–Shell Nanowires as Fast and High-Capacity Lithium Storage Media, Nano Lett., 2007, vol. 7, p. 2638.
  132. Lee, H., Kim, H., Doo, S.-G., and Cho, J., Synthesis and Optimization of Nanoparticle Ge Confined in a Carbon Matrix for Lithium Battery Anode Material, J. Electrochem. Soc., 2007, vol. 154, p. A343.
  133. Fan, S., Lim, L.Y., Tay, Y.Y., Pramana, S.S., Rui, X., Samani, M.K., Yan, Q., Tay, B.K., Toney, M.F., and Hng, H.H., Rapid fabrication of a novel Sn–Ge alloy: structure–property relationship and its enhanced lithium storage properties, J. Mater. Chem. A, 2013, vol. 1, p. 14577.
  134. Fan, S., Zhao, J., Guo, J., Yan, Q., Ma, J., and Hng, H.H., p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit, Appl. Phys. Lett., 2010, vol. 96, Article No. 182104.
  135. Fan, S., Sun, T., Rui, X., Yan, Q., and Hng, H.H., Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries, J. Power Sources, 2012, vol. 201, p. 288.
  136. Cho, Y.J., Kim, C.H., Im, H.S., Myung, Y., Kim, H.S., Back, S.H., Lim, Y.R., Jung, C.S., Jang, D.M., Park, J., Lim, S.H., Cha, E.H., Bae, K.Y., Song, M.S., and Cho, W.I., Germanium–tin alloy nanocrystals for high-performance lithium ion batteries, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 11691.
  137. Bodnarchuk, M.I., Kravchyk, K.V., Krumeich, F., Wang, S., and Kovalenko, M.V., Colloidal Tin–Germanium Nanorods and Their Li-Ion Storage Properties, ACS Nano, 2014, vol. 8, p. 2360.
  138. Doherty, J., McNulty, D., Biswas, S., Moore, K., Conroy, M., Bangert, U., O’Dwyer, C., and Holmes, J.D., Germanium Tin Alloy Nanowires as Anode Materials for High Performance Li-Ion Batteries, Nanotechnol., 2020, vol. 31, Article No. 165402.
  139. Abel, P.R., Fields, M.G., Heller, A., and Mullins, C.B., Tin–Germanium Alloys as Anode Materials for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 15860
  140. Lin, N., Zhou, J., Han, Y., Zhang, K., Zhu, Y., and Qian, Y., Chemical synthesis of porous hierarchical Ge–Sn binary composites using metathesis reaction for rechargeable Li-ion batteries, Chem. Commun., 2015, vol. 51, p. 17156.
  141. Cao, X., Fan, Y., Qu, J., Wang, T., Legut, D., and Zhang, Q., 2D-layered Sn/Ge anodes for lithium-ion batteries with high capacity and ultra-fast Li ion diffusivity, J. Ener. Chem., 2020, vol. 47, p. 160.
  142. Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., and Le Lay, G., Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 2014, vol. 16, Article No. 095002.
  143. Zhu, F., Chen, W., Xu, Y., Gao, C., Guan, D., Liu, C., Qian, D., Zhang, S.-C., and Jia, J., Epitaxial growth of two-dimensional stanine, Nature Mater, 2015, vol. 14, p. 1020.
  144. Zhao, X., Wang, C., Wang, D., Hahn, H., and Fichtner, M., Ge–Cu nanoparticles produced by inert gas condensation and their application as anode material for lithium ion batteries, Electrochem. Commun., 2013, vol. 35, p. 116.
  145. Yu, Y., Yan, C., Gu, L., Lang, X., Tang, K., Zhang, L., Hou, Y., Wang, Z., Chen, M.W., Schmidt, O.G., and Maier, J., Three-Dimensional (3D) Bicontinuous Au/Amorphous-Ge Thin Films as Fast and High-Capacity Anodes for Lithium-Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 281.
  146. Klavetter, K.C., de Souza, J.P., Hellera, A., and Mullins, C.B., High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material, J. Mater. Chem. A, 2015, vol. 3, p. 5829.
  147. Chen, X., Fister, T.T., Esbenshade, J., Shi, B., Hu, X., Wu, J., Gewirth, A.A., Bedzyk, M.J., and Fenter, P., Reversible Li-Ion Conversion Reaction for a TixGe Alloy in a Ti/Ge Multilayer, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 8169.
  148. Wang, X., Dong, C., Lou, M., Dong, W., Yuan, X., Tang, Y., and Huang, F., Tunable synthesis of Fe–Ge alloy confined in oxide matrix and its application for energy storage, J. Power Sources, 2017, vol. 360, p. 124.
  149. Yu, Z., Yuan, L., Wang, D., Yuan, M., Hu, Z., Li, H., and Meng, X., Size tunable Ga–Ge nanowires for Li-ion battery prepared by in situ alloying in ionic liquid electrodeposition, Appl. Surf. Sci., 2020, vol. 508, Article No. 144852.
  150. Zhao, W., Chen, J., Lei, Y., Du, N., and Yang, D., A novel three-dimensional architecture of Co–Ge nanowires towards high-rate lithium and sodium storage, J. Alloys Comps., 2020, vol. 815, Article No. 152281.
  151. Duveau, D., Fraisse, B., Cunin, F., and Monconduit, L., Synergistic Effects of Ge and Si on the Performances and Mechanism of the GexSi1 – x Electrodes for Li Ion Batteries, Chem. Mater., 2015, vol. 27, p. 3226.
  152. Loaiza, L.C., Salager, E., Louvain, N., Boulaoued, A., Iadecola, A., Johansson, P., Stievano, L., Seznec, V., and Monconduit, L., Understanding the lithiation/delithiation mechanism of Si1 – xGex alloys, J. Mater. Chem. A, 2017, vol. 5, p. 12462.
  153. Ma, K. and Lin, N., The controllable synthesis of Si/Ge composites with a synergistic effect for enhanced Li storage performance, Inorg. Chem. Front., 2019, vol. 6, p. 1897.
  154. Hashimoto, Y., Machida, N., and Shigematsu, T., Preparation of Li4.4GexSi1 – x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries, Solid State Ionics, 2004, vol. 175, p. 177.
  155. Wang, D., Yang, Y., and He, D., Electrochemical performances of nanorod structured Si1 – xGex anodes, Mater. Letters, 2014, vol. 128, p. 163.
  156. Xiao, W., Zhou, J., Yu, L., Wang, D., and Lou, X.W., Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium-Storage Properties, Angew. Chem. Int. Ed., 2016, vol. 55, p. 7427.
  157. Stokes, K., Geaney, H., Flynn, G., Sheehan, M., Kennedy, T., and Ryan, K.M., Direct Synthesis of Alloyed Si1 – xGex Nanowires for Performance-Tunable Lithium Ion Battery Anodes, ACS Nano, 2017, vol. 11, p. 10088.
  158. Ahn, J., Kim, B. Jang, G., and Moon, J., Magnesiothermic Reduction-enabled Synthesis of Si–Ge Alloy Nanoparticles with Canyon-like Surface Structure for Li-ion Battery, ChemElectroChem, 2018, vol. 5, p. 2729.
  159. Zhou, J., Zhao, H., Lin, N., Li, T., Li, Y., Jiang, S., Tian, J., and Qian, Y., Silicothermic Reduction Reaction for Fabricating Interconnected Si–Ge Nanocrystals with Fast and Stable Li-Storage, J. Mater. Chem. A, 2020, vol. 8, p. 6597.
  160. Abel, P.R., Chockla, A.M., Lin, Y.-M., Holmberg, V.C., Harris, J.T., Korgel, B.A., Heller, A., and Mullins, C.B., Nanostructured Si(1 – x)Gex for Tunable Thin Film Lithium-Ion Battery Anodes, ACS Nano, 2013, vol. 7, p. 2249.
  161. Ge, M., Kim, S., Nie, A., Shahbazian-Yassar, R., Mecklenburg, M., Lu, Y., Fang, X., Shen, C., Rong, J., Park, S.Y., Kim, D.S., Kim, J.Y., and Zhou, C., Capacity retention behavior and morphology evolution of SixGe1 – x nanoparticles as lithium-ion battery anode, Nanotechnology, 2015, vol. 26, Article No. 255702.
  162. Yu, J., Du, N., Wang, J., Zhang, H., and Yang, D., SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries, J. Alloys Compds., 2013, vol. 577, p. 564.
  163. Stokes, K., Flynn, G., Geaney, H., Bree, G., and Ryan, K.M., Axial Si–Ge Heterostructure Nanowires as Lithium-ion Battery Anodes, Nano Lett., 2018, vol. 18, p. 5569.
  164. Flynn, G., Stokes, K., and Ryan, K.M., Low temperature solution synthesis of silicon, germanium and Si–Ge axial heterostructures in nanorod and nanowire form, Chem. Commun., 2018, vol. 54, p. 5728.
  165. Stokes, K., Boonen, W., Geaney, H., Kennedy, T., Borsa, D., and Ryan, K.M., Tunable Core–Shell Nanowire Active Material for High Capacity Li-Ion Battery Anodes Comprised of PECVD Deposited aSi on Directly Grown Ge Nanowires, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 19372.
  166. Li, J., Yue, C., Yu, Y., Chui, Y., Yin, J., Wu, Z., Wang, C., Zang, Y., Lin, W., Li, J., Wu, S., and Wu, Q., Si/Ge core–shell nanoarrays as the anode material for 3D lithium ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 14344.
  167. Lin, Y.-C., Kim, D., Li, Z., Nguyen, B.-M., Li, N., Zhang, S., and Yoo, J., Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures, Nanoscale, 2017, vol. 9, p. 1213.
  168. Kim, D., Li, N., Sheehan, C.J., and Yoo, J., Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g–1, Nanoscale, 2018, vol. 10, p. 7343.
  169. Song, T., Cheng, H., Town, K., Park, H., Black, R.W., Lee, S., Park, W.I., Huang, Y., Rogers, J.A., Nazar, L.F., and Paik, U., Electrochemical Properties of Si–Ge Heterostructures as an Anode Material for Lithium Ion Batteries, Adv. Funct. Mater., 2014, vol. 24, p. 1458.
  170. Song, T., Cheng, H.Y., Choi, H., Lee, J.H., Han, H., Lee, D.H., Yoo, D.S., Kwon, M.S., Choi J.M., Doo, S.G., Chang, H., Xiao, J.L., Huang, Y.G., Park, W.I., Chung, Y.C., Kim, H., Rogers, J.A., and Paik U., Si/Ge Double-Layered Nanotube Array as a Lithium Ion Battery Anode, ACS Nano, 2012, vol. 6, p. 303.
  171. Yue, C., Yu, Y., Wu, Z., He, X., Wang, J.Y., Li, J.T., Li, C., Wu, S., Li, J., and Kang, J., Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays, Nanoscale, 2014, vol. 6, p. 1817.
  172. Yue, C., Chang, W.J., Park, W.I., Lieu, G., and Li, J., Ge nanocoatings as anode for three dimensional Si based Li ion microbatteries, Electrochem. Commun., 2020, vol. 110, Article No. 106618.
  173. Lin, N., Wang, L., Zhou, J., Zhou, J., Han, Y., Zhu, Y., Qian, Y., and Cao, C., Si/Ge nanocomposite prepared by a one-step solid-state metathesis reaction and its enhanced electrochemical performance, J. Mater. Chem. A, 2015, vol. 3, p. 11199. https://doi.org/10.1039/C5TA02216a
  174. Kim, M.-H., Ahn, S.H., and Park, J.-W., Electrochemical Characteristics of a Si/Ge Multilayer Anode for Lithium-Ion Batteries, J. Korean Phys. Soc., 2006, vol. 49, p. 1107.
  175. Hwang, C.-M. and Park, J.-W., Electrochemical characterizations of multi-layer and composite silicon–germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources, 2011, vol. 196, p. 6772.
  176. Bensalah, N., Kamand, F.Z., Mustafa, N., and Matalqeh, M., Silicon–Germanium bilayer sputtered onto a carbon nanotube sheet as anode material for lithium-ion batteries, J. Alloys Compds, 2019, vol. 811, Article No. 152088.
  177. DiLeo, R.A., Ganter, M.J., Thone, M.N., Forney, M.W., Staub, J.W., Rogers, R.E., and Landi, B.J., Balanced approach to safety of high capacity silicon–germanium–carbon nanotube free-standing lithium ion battery anodes, Nano Energy, 2013, vol. 2, p. 268.
  178. Luo, W., Shen, D., Zhang, R., Zhang, B., Wang, Y., Dou, S.X., Liu, H.K., and Yang, J., Decoration on Carbon Shell: Boosting Lithium-Storage Properties of Silicon Germanium Nanograin Nanoparticles, Adv. Funct. Mater., 2016, vol. 26, p. 7800.
  179. Zhang, Y., Du, N., Xiao, C., Wu, S., Chen, Y., Lin, Y., Jiang, J., He, Y., and Yang, D., Simple synthesis of SiGe@C porous microparticles as high-rate anode materials for lithium-ion batteries. RSC Adv., 2017, vol. 7, p. 33837.
  180. Mishra, K., George, K., and Zhou, X.-D., Submicron silicon anode stabilized by single step carbon and germanium coatings for high-capacity lithium-ion batteries, Carbon, 2018, vol. 138, p. 419.
  181. Wang, J., Du, N., Song, Z., Wu, H., Zhang, H., and Yang, D., Synthesis of SiGe-based three-dimensional nanoporous electrodes for high performance lithium-ion batteries, J. Power Sources, 2013, vol. 229, p. 185.
  182. Zhang, Q., Chen, H., Luo, L., Zhao, B., Luo, H., Han, X., Wang, J., Wang, C., Yang, Y., Zhu, T., and Liu, M., Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries, Energy Environ. Sci., 2018, vol. 11, p. 669.
  183. Yang, Y., Liu, S., Bian, X.-F., Feng, J., An, Y., and Chao Yuan, C., Morphology- and Porosity-Tunable Synthesis of 3D-Nanoporous SiGe Alloy as High-Performance Lithium-Ion Battery Anode, ACS Nano, 2018, vol. 12, p. 2900.
  184. Li, X., Liang, J., Hou, Z., Zhu, Y., Wang, Y., and Qian, Y., A synchronous approach for facile production of Ge–carbon hybrid nanoparticles for high-performance lithium batteries Chem. Commun., 2015, vol. 51, p. 3882.
  185. Cui, G., Gu, L., Zhi, L., Kaskhedikar, N., van Aken, P.A., Müllen, K., and Maier, J., A Germanium–Carbon Nanocomposite Material for Lithium Batteries, Adv. Mater., 2008, vol. 20, p. 3079.
  186. Li, Q., Zhang, Z., Dong, S., Li, C., Ge, X., Li, Z., Ma, J., and Yin, L., Ge Nanoparticles Encapsulated in Interconnected Hollow Carbon Boxes as Anodes for Sodium Ion and Lithium Ion Batteries with Enhanced Electrochemical Performance, Part. Part. Syst. Charact., 2017, vol. 34, article No. 1600115.
  187. Li, L., Seng, K.H., Feng, C., Liu, H.K., and Guo, Z., Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties, J. Mater. Chem. A, 2013, vol. 1, p. 7666.
  188. Zhang, W., Chu, X., Chen, C., Xiang, J., Liu, X., Huang, Y., and Hu, X., Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties, Nanoscale, 2016, vol. 8, p. 12215.
  189. Li, D., Feng, C., Liu, H., and Guo, Z., Hollow carbon spheres with encapsulated germanium as an anode material for lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 978.
  190. Liu, M., Ma, X., Gan, L., Xu, Z., Zhu, D., and Chen, L., A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 17107.
  191. Liu, X., Ji, T., Nie, T., Wang, T., Liu, Z., Liu, S., Zhao, J., and Li, Y., A nano-Ge-coated 3D porous carbon fabricated by ionic liquid electrodeposition for application in lithium storage, Mater. Lett., 2020, vol. 261, article No. 127157.
  192. Li, X., Liang, J., Hou, Z., Zhang, W., Wang, Y., Zhu, Y., and Qian, Y., The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode, J. Power Sources, 2015, vol. 293, p. 868.
  193. Fang, S., Shen, L., Li, S., Kim, G.-T., Bresser, D., Zhang, H., Zhang, S., Maier, J., and Passerini, S., Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries, ACS Nano, 2019, vol. 13, p. 9511.
  194. Forney, M.W., Dzara, M.J., Doucett, A.L., Ganter, M.J., Staub, J.W., Ridgley, R.D., and Landi, B.J., Advanced germanium nanoparticle composite anodes using single wall carbon nanotube conductive additives, J. Mater. Chem. A, 2014, vol. 2, p. 14528.
  195. Wang, Y. and Wang, G., Facile Synthesis of Ge@C Core–Shell Nanocomposites for High-Performance Lithium Storage in Lithium-Ion Batteries, Chem. Asian J., 2013, vol. 8, p. 3142.
  196. Qiang, T., Fang, J., Song, Y., Ma, Q., Ye, M., Fang, Z., and Geng, B., Ge@C core–shell nanostructures for improved anode rate performance in lithium-ion batteries, RSC Adv., 2015, vol. 5, p. 17070.
  197. Xiao, Y., Cao, M., Ren, L., and Hu, C., Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance, Nanoscale, 2012, vol. 4, p. 7469
  198. Tan, L.P., Lu, Z., Tan, H.T., Zhu, J., Rui, X., Yan, Q., and Hng, H.H., Germanium nanowires-based carbon composite as anodes for lithium-ion batteries, J. Power Sources, 2012, vol. 206, p. 253.
  199. Kim, S.-W., Ngo, D.T., Heo, J., Park, C.-N., and Park, C.-J., Electrodeposited Germanium/Carbon Composite as an Anode Material for Lithium-Ion Batteries, Electrochim. Acta, 2017, vol. 238, p. 319.
  200. Lee, Y.-W., Kim, D.-M., Kim, S.-J., Kim, M.-C., Choe, H.-S., Lee, K.-H., Sohn, J.I., Cha, S.N., Kim, J.M., and Park, K.-W., In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High-Performance Anode Material for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 7022.
  201. Li, W., Li, M., Yang, Z., Xu, J., Zhong, X., Wang, J., Zeng, L., Liu, X., Jiang, Y., Wei, X., Gu, L., and Yu, Y., Carbon-Coated Germanium Nanowires on Carbon Nanofibers as Self-Supported Electrodes for Flexible Lithium-Ion Batteries, Small, 2015, vol. 11, p. 2762.
  202. Seo, M.-H., Park, M., Lee, K.T., Kim, K., Kim, J., and Cho, J., High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries, Energy Environ. Sci., 2011, vol. 4, p. 425.
  203. Ngo, D.T., Le, H.T.T., Kim, C., Lee, J.-Y., Fisher, J.G., Kim, I.-D., and Park, C.-J., Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries, Energy Environ. Sci., 2015, vol. 8, p. 3577.
  204. Xiao, Y. and Cao, M., Freeze-Drying-Assisted Synthesis of Hierarchically Porous Carbon/Germanium Hybrid for High-Efficiency Lithium-Ion Batteries, Chem. Asian J., 2014, vol. 9, p. 2859.
  205. Zhang, S., Zheng, Y., Huang, X., Hong, J., Cao, B., Hao, J., Fan, Q., Zhou, T., and Guo, Z., Structural Engineering of Hierarchical Micronanostructured Ge–C Framework by Controlling the Nucleation for Ultralong-Life Li Storage, Adv. Energy Mater., 2019, vol. 9, Article No. 1900081.
  206. Zhao, M., Zhao, D.-L., Han, X.-Y., Yang, H.-X., Duan, Y.-J., and Tian, X.-M., Ge nanoparticles embedded in spherical ordered mesoporous carbon as anode material for high performance lithium ion batteries, Electrochim. Acta, 2018 vol. 287, p. 21.
  207. Ngo, D.T., Kalubarme, R.S., Le, H.T.T., Fisher, J.G., Park, C.-N., Kim, I.-D., and Park, C.-J., Carbon-Interconnected Ge Nanocrystals as an Anode with Ultra-Long-Term Cyclability for Lithium Ion Batteries, Adv. Funct. Mater., 2014, vol. 24, p. 5291.
  208. Xiao, Y. and Cao, M., High-Performance Lithium Storage Achieved by Chemically Binding Germanium Nanoparticles with N–Doped Carbon, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 12922.
  209. Youn, D. H., Heller, A., and Mullins, C. B., Simple Synthesis of Nanostructured Sn/Nitrogen-Doped Carbon Composite Using Nitrilotriacetic Acid as Lithium Ion Battery Anode, Chem. Mater., 2016, vol. 28, p. 1343.
  210. Youn, D.H., Patterson, N.A., Park, H., Heller, A., and C. Mullins, B., Facile Synthesis of Ge/N-Doped Carbon Spheres with Varying Nitrogen Content for Lithium Ion Battery Anodes, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 27788.
  211. Ryu, J., Hong, D., Shin, S., Choi, W., Kim, A., and Park, S., Hybridizing germanium anodes with polysaccharide-derived nitrogen-doped carbon for high volumetric capacity of Li-ion batteries, J. Mater. Chem., 2017, vol. 5, p. 15828.
  212. Ma, X., Zhou, Y., Chen, M., and Wu, L., Synthesis of Olive-Like Nitrogen-Doped Carbon with Embedded Ge Nanoparticles for Ultrahigh Stable Lithium Battery Anodes, Small, 2017, vol. 13, article No. 1700403.
  213. Wang, B., Jin, J., and Wen, Z., In situ synthesis of core-shell structured Ge@NC hybrids as high performance anode material for lithium-ion batteries, Chem. Eng. J., 2019, vol. 360, p. 1301.
  214. Fang, Y., Liu, R., Zeng, L., Liu, J., Xu, L., He, X., Huang, B., Chen, Q., Wei, M., and Qian, Q., Preparation of Ge/N, S co-doped ordered mesoporous carbon composite and its long-term cycling performance of lithium-ion batteries, Electrochim. Acta, 2019, vol. 318, p. 737.
  215. Fang, S., Tong, Z., and Zhang, X., 3D nitrogen-doped carbon foam supported Ge@C composite as anode for high performance lithium-ion battery, Chem. Eng. J., 2017, vol. 322, p. 188.
  216. Chen, C., Xiao, T., Zhang, W., Wang, J., and Wei, M., Hierarchically structural Ge encapsulated with nitrogen-doped carbon for high performance lithium storage, J. Electroanalyt. Chem., 2019, vol. 832, p. 182.
  217. Akula, N., Sharma, N., Lohegaonkar, A., Ogale, S.B., and Majumdar, M., Coherent Solution-phase Synthesis of a Germanium-Graphitic Nanocomposite and Its Evaluation for Lithium-Ion Battery Anodes: Non-innocent Role of the Mashima Reagent, Chem Asian J., 2020, vol. 15, p. 585.
  218. Liu, J., Muhammad, S., Wei, Z., Zhu, J., and Duan, X., Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries, Nanotechnology, 2020, vol. 31, article No. 015402.
  219. Gulzar, U., Li, T., Bai, X., Goriparti, S., Brescia, R., Capiglia, C., and Zaccaria, R.P., Nitrogen-doped single walled carbon nanohorns enabling effective utilization of Ge nanocrystals for next generation lithium ion batteries, Electrochim. Acta, 2019, vol. 298, p. 89.
  220. Huo, K., Wang, L., Peng, C., Peng, X., Li, Y., Li, Q., Jin, Z., and Chu, P.K., Crumpled N-doped carbon nanotubes encapsulated with peapod-like Ge nanoparticles for high-rate and long-life Li-ion battery anodes, J. Mater. Chem. A, 2016, vol. 4, p. 7585.
  221. Xu, Y., Zhu, X., Zhou, X., Liu, X., Liu, Y., Dai, Z., and Bao, J., Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries, J. Phys. Chem. C, 2014, vol. 118, p. 28502.
  222. Qin, J., Wang, X., Cao, M., and Hu, C., Germanium Quantum Dots Embedded in N-Doping Graphene Matrix with Sponge-Like Architecture for Enhanced Performance in Lithium-Ion Batteries, Chem. Eur. J., 2014, vol. 20, p. 9675.
  223. Li, S., Chen, C., Fu, K., White, R., Zhao, C., Bradford, P.D., and Zhang, X., Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries, J. Power Sources, 2014, vol. 253, p. 366.
  224. Li, S., Chen, C., Fu, K., Xue, L., Zhao, C., Zhang, S., Yi Hu, Y., Zhou, L., and Zhang, X., Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries, Solid State Ionics, 2014, vol. 254, p. 17.
  225. Wang, W., Xiao, Y., Wang, X., Liu, B., and Cao, M., In Situ Encapsulation of Germanium Clusters in Carbon Nanofibers: High-Performance Anodes for Lithium-Ion Batteries, ChemSusChem, 2014, vol. 7, p. 2914.
  226. Woo, S.-H., Choi, S.J., Park, J.-H., Yoon, W.-S., Hwang, S.W., and Whang, D., Entangled Germanium Nanowires and Graphite Nanofibers for the Anode of Lithium-Ion Batteries, J. Electrochem. Soc., 2013, vol. 160, p. A112.
  227. Li, W., Yang, Z., Cheng, J., Zhong, X., Gu, L., and Yu, Y., Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries, Nanoscale, 2014, vol. 6, p. 4532.
  228. Qie, L., Chen, W.-M., Wang, Z.-H., Shao, Q.-G., Li, X., Yuan, L.-X., Hu, X.-L., Zhang, W.-X., and Huang, Y.-H., Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability, Adv. Mater., 2012, vol. 24, p. 2047.
  229. Liu, J., Song, K., Zhu, C., Chen, C.-C., van Aken, P.A., Maier, J., and Yu, Y., Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries, ACS Nano, 2014, vol. 8, p. 7051.
  230. Abdollahi, M. and Davoodi, J., The influence of covering a germanium nanowire with a single wall carbon nanotube on mechanical properties: A molecular dynamics study, J. Appl. Phys., 2017, vol. 122, article No. 035102.
  231. DiLeo, R.A., Ganter, M.J., Raffaelle, R.P., and Landi, D.J., Germanium–single-wall carbon nanotube anodes for lithium ion batteries, J. Mater. Res., 2010, vol. 25, p. 1441.
  232. DiLeo, R.A., Frisco, S., Ganter, M.J., Rogers, R.E., Raffaelle, R.P., and Landi, B.J., Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries, J. Phys. Chem. C, 2011, vol. 115, p. 22609.
  233. Goriparti, S., Gulzar, U., Miele, E., Palazon, F., Scarpellini, A., Marras, S., Monaco, S., Zaccaria, R.P., and Capiglia, C., Facile synthesis of Ge–MWCNT nanocomposite electrodes for high capacity lithium ion batteries, J. Mater. Chem. A, 2017, vol. 5, p. 19721.
  234. Hao, J., Li, N., Ma, X., Liu, X., Liu, X., Li, Y., Xu, H., and Zhao, J., Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries, Mater. Lett., 2015, vol. 144, p. 50.
  235. Hwang, I.-S., Kim, J.-C., Seo, S.-D., Lee, S., Lee, J.-H., and Kim, D.-W., A binder-free Ge-nanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries, Chem. Commun., 2012, vol. 48, p. 7061.
  236. Mo, R., Lei, Z., Rooney, D., and Sun, K., Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Batteries, ACS Nano, 2019, vol. 13, p. 7536.
  237. Sun, Y., Jin, S., Yang, G., Wang, J., and Wang, C., Germanium Nanowires-in-Graphite Tubes via Self-Catalyzed Synergetic Confined Growth and Shell-Splitting Enhanced Li-Storage Performance, ACS Nano, 2015, vol. 9, p. 3479.
  238. Susantyoko, R.A., Wang, X., Sun, L., Pey, K.L., Fitzgerald, E., and Zhang, Q., Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes, Carbon, 2014, vol. 77, p. 551.
  239. Tang, W., Liu, Y., Peng, C., Hu, M.Y., Deng, X., Lin, M., Hu, J.Z., and Loh, K.P., Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System, J. Am. Chem. Soc., 2015, vol. 137, p. 2600.
  240. Wang, J., Wang, J.-Z., Sun, Z.-Q., Gao, X.-W., Zhong, C., Chou, S.-L., and Liu, H.-K., A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 4613.
  241. Wang, X., Susantyoko, R.A., Fan, Y., Sun, L., Xiao, Q., and Zhang, Q., Vertically Aligned CNT-Supported Thick Ge Films as High-Performance 3D Anodes for Lithium Ion Batteries, Small, 2014, vol. 10, p. 2826.
  242. Chen, Y., Ma, L., Shen, X., Ji, Z., Yuan, A., Xu, K., and Shah, S.A., In-situ synthesis of Ge/reduced graphene oxide composites as ultrahigh rate anode for lithium-ion battery, J. Alloys Compnds., 2019, vol. 801, p. 90.
  243. Cheng, J. and Du, J., Facile synthesis of germanium–graphene nanocomposites and their application as anode materials for lithium ion batteries, CrystEngComm., 2012, vol. 14, p. 397.
  244. Chockla, A.M., Panthani, M.G., Holmberg, V.C., Hessel, C.M., Reid, D.K., Bogart, T.D., Harris, J.T., Mullins, C.B., and Korgel, B.A., Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries, J. Phys. Chem. C, 2012, vol. 116, p. 11917.
  245. Fang, S., Shen, L., Zheng, H., and Zhang, X., Ge/graphene/carbon nanotube composite anode for high performance lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 1498.
  246. Gao, C., Kim, N.D., Salvatierra, R.V., Lee, S.-K., Li, L., Li, Y., Sha, J., Lopez Silva, G.A., Fei, H., Xie, E., and Tour, J.M., Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes, Carbon, 2017, vol. 123, p. 433.
  247. Hu, J., Ouyang, C., Yang, S.A., and Yang, H.Y., Germagraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations, Nanoscale Horiz., 2019, vol. 4, p. 457.
  248. Jin, S., Li, N., Cui, H., and Wang, C., Embedded into Graphene Ge Nanoparticles Highly Dispersed on Vertically Aligned Graphene with Excellent Electrochemical Performance for Lithium Storage, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 19397.
  249. Kim, J.K., Park, G.D., and Kang, Y.C., Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode, J. Korean Ceram. Soc., 2019, vol. 56, p. 65.
  250. Kim, H., Son, Y., Park, C., Cho, J., and Choi, H.C., Catalyst-free Direct Growth of a Single to a Few Layers of Graphene on a Germanium Nanowire for the Anode Material of a Lithium Battery, Angew. Chem. Int. Ed., 2013, vol. 52, p. 5997.
  251. Mo, R., Rooney, D., and Sun, K., Hollow Germanium Nanocrystals on Reduced Graphene Oxide for Superior Stable Lithium-Ion Half Cell and Germanium (Lithiated)-Sulfur Battery, Energy Storage Mater., 2020, vol. 26, p. 414.
  252. Ouyang, L., Guo, L., Cai, W., Ye, J., Hu, R., Liu, J., Yang, L., and Zhu, M., Facile synthesis of Ge@FLG composites by plasma assisted ball milling for lithium ion battery anodes, J. Mater. Chem. A, 2014, vol. 2, p. 11280.
  253. Wang, T., Xie, G., Zhu, J., and Lu, B., Elastic Reduced Graphene Oxide Nanosheets Embedded in Germanium Nanofiber Matrix as Anode Material for High-Performance Li-Ion Battery, Electrochim. Acta, 2015, vol. 186, p. 64.
  254. Wang, C., Ju, J., Yang, Y., Tang, Y., Lin, J., Shi, Z., Han, R.P.S., and Huang, F., In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties, J. Mater. Chem. A, 2013, vol. 1, p. 8897.
  255. Wang, B., Wen, Z., Jin, J., Hong, X., Zhang, S., and Rui, K., A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries, J. Power Sources, 2017, vol. 342, p. 521.
  256. Wang, B., Jin, J., Rui, K., Zhu, C., and Wen, Z., Scalable synthesis of hierarchical porous Ge/rGO microspheres with an ultra-long cycling life for lithium storage, J. Power Sources, 2018, vol. 396, p. 124.
  257. Xue, D.-J., Xin, S., Yan, Y., Jiang, K.-C., Yin, Y.-X., Guo, Y.-G., and Wan, L.-J., Improving the Electrode Performance of Ge through Ge@C Core–Shell Nanoparticles and Graphene Networks, J. Am. Chem. Soc., 2012, vol. 134, p. 2512.
  258. Zhao, M., Zhao, D.-L., Yang, H.-X., Han, X.-Y., Duan, Y.-J., Tian, X.-M., and Meng, W.-J., Graphene-supported cubic hollow carbon shell-coated germanium particles as high-performance anode for lithium-ion batteries, Ceram. Int., 2019, vol. 45, p. 13210.
  259. Zhao, F., Wang, Y., Zhang, X., Liang, X., Zhang, F., Wang, L., Li, Y., Feng, Y., and Feng, W., Few-layer methyl-terminated germanene–graphene nanocomposite with high capacity for stable lithium storage, Carbon, 2020, vol. 161, p. 287.
  260. Zhong, X., Wang, J., Li, W., Liu, X., Yang, Z., Gu, L., and Yu, Y., Facile synthesis of germanium–reduced graphene oxide composite as anode for high performance lithium-ion batteries, RSC Adv., 2014, vol. 4, p. 58184.
  261. Wang, B., Jin, J., Hong, X., Gu, S., Guo, J., and Wen, Z., Facile synthesis of the sandwich-structured germanium/reduced graphene oxide hybrid: an advanced anode material for high-performance lithium ion batteries, J. Mater. Chem. A, 2017, vol. 5, p. 13430.
  262. Yuan, F.-W. and Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications, Chem. Mater., 2014, vol. 26, p. 2172.
  263. Ren, J.-G., Wu, Q.-H., Tang, H., Hong, G., Zhang, W., and Lee, S.-T., Germanium–graphene composite anode for high-energy lithium batteries with long cycle life, J. Mater. Chem. A, 2013, vol. 1, p. 1821.
  264. Zhong, C., Wang, J.-Z., Gao, X.-W., Wexler, D., and Liu, H.-K., In situ one-step synthesis of a 3D nanostructured germanium–graphene composite and its application in lithium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 10798.
  265. Wang, C.D., Chui, Y.S., Li, Y., Chen, X.F., and Zhang, W.J., Binder-free Ge-three-dimensional graphene electrodes for high-rate capacity Li-ion batteries, Appl. Phys. Lett., 2013, vol. 103, Article No. 253903.
  266. Tripathi, M., Markevich, A., Böttger, R., Facsko, S., Besley, E., Kotakoski, J., and Susi, T., Implanting Germanium into Graphene, ACS Nano, 2018, vol. 12, p. 4641.
  267. Peña, J.S., Sandu, I., Joubert, O., Pascual, F.S., Areán, C.O., and Brousse, T., Electrochemical Reaction between Lithium and β-Quartz GeO2, Electrochem. Solid-State Lett., 2004, vol. 7, p. A278.
  268. Feng, J.K., Lai, M.O., and Lu, L., Influence of grain size on lithium storage performance of germanium oxide films, Electrochim. Acta, 2012, vol. 62, p. 103.
  269. Jin, S., Li, N., Cui, H., and Wang, C., Growth of the vertically aligned graphene@amorphous GeOx sandwich nanoflakes and excellent Li storage properties, Nano Energy, 2013, vol. 2, p. 1128.
  270. Seng, K.H., Park, M., Guo, Z.P., Liu, H.K., and Cho, J., Catalytic Role of Ge in Highly Reversible GeO2/Ge/C Nanocomposite Anode Material for Lithium Batteries. Nano Letters, 2013, vol. 13, p. 1230.
  271. Ngo, D.T., Kalubarme, R.S., Chourashiya, M.G., Park, C.-N., and Park, C.-J., Electrochemical Performance of GeO2/C Core Shell based Electrodes for Li-ion Batteries, Electrochim. Acta, 2014, vol. 116, p. 203.
  272. Zeng, L., Huang, X., Chen, X., Zheng, C., Qian, Q., Chen, Q., and Wei, M., Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 232.
  273. Lin, Y.-M., Klavetter, K.C., Heller, A., and Mullins, C.B., Storage of Lithium in Hydrothermally Synthesized GeO2 Nanoparticles, J. Phys. Chem. Lett., 2013, vol. 4, p. 999.
  274. Jahel, A., Darwiche, A., Ghimbeu, C.M., Vix-Guterl, C., and Monconduit, L., High cycleability nano-GeO2/mesoporous carbon composite as enhanced energy storage anode material in Li-ion batteries, J. Power Sources, 2014, vol. 269, p. 755.
  275. Wei, W. and Guo, L., One-Step In Situ Synthesis of GeO2/Graphene Composites Anode for High-Performance Li-Ion Batteries, Part. Part. Syst. Charact., 2013, vol. 30, p. 658.
  276. Chen, Y., Yan, C., and Schmidt, O.G., Strain-Driven Formation of Multilayer Graphene/GeO2 Tubular Nanostructures as High-Capacity and Very Long-Life Anodes for Lithium-Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 1269.
  277. Qiu, H., Zeng, L., Lan, T., Ding, X., and Wei, M., In situ synthesis of GeO2/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 1619.
  278. Lv, D., Gordin, M.L., Yi, R., Xu, T., Song, J., Jiang, Y.-B., Choi, D., and Wang, D., GeOx/Reduced Graphene Oxide Composite as an Anode for Li-Ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance, Adv. Funct. Mater., 2014, vol. 24, p. 1059.
  279. Xu, R., Wu, S., Du, Y., and Zhang, Z., A facile route to dually protected Ge@GeO2 composites as anode materials for lithium ion battery, Chem. Eng. J., 2016, vol. 296, p. 349.
  280. Choi, S.H., Jung, K.Y., and Kang, Y.C., Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long life lithium-ion batteries, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 13952.
  281. Wang, X.-L., Han, W.-Q., Chen, H., Bai, J., Tyson, T.A., Yu, X.-Q., Wang, X.-J., and Yang X.-Q., Amorphous Hierarchical Porous GeOx as High-Capacity Anodes for Li Ion Batteries with Very Long Cycling Life, J. Am. Chem. Soc., 2011, vol. 133, p. 20692.
  282. Lim, S.-Y., Jang, W., Yun, S., Yoon, W.-S., Choi, J.-Y., and Whang, D., Amorphous germanium oxide nanobubbles for lithium-ion battery anode, Mater. Res. Bull., 2019, vol. 110, p. 24.
  283. Kim, C.H., Jung, Y.S., Lee, K.T., Ku, J.H., and Oh, S.M., The role of in situ generated nano-sized metal particles on the coulombic efficiency of MGeO3 (M = Cu, Fe, and Co) electrodes, Electrochim. Acta, 2009, vol. 54, p. 4371.
  284. Hwang, J., Jo, C., Kim, M.G., Chun, J., Lim, E., Kim, S., Jeong, S., Kim, Y., and Lee, J., Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility, ACS Nano, 2015, vol. 9, p. 5299.
  285. Son, Y., Park, M., Son, Y., Lee, J.-S., Jang, J.-H., Kim, Y., and Cho, J., Quantum Confinement and Its Related Effects on the Critical Size of GeO2 Nanoparticles Anodes for Lithium Batteries, Nano Lett., 2014, vol. 14, p. 1005.
  286. Li, X., Li, W., Shen, P., Yang, L., Li, Y., Shi, Z., and Zhang, H., Layered GeP-black P(Ge2P3): An advanced binary-phase anode for Li/Na storage, Ceram. Int., 2019, vol. 45, p. 15711.
  287. Li, W., Li, X., Yu, J., Liao, J., Zhao, B., Huang, L., Abdelhafiz, A., Zhang, H., Wang, J.-H., Guo, Z., and Liu, M., A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy, Nano Energy, 2019, vol. 61, p. 594.
  288. Shen, H., Ma, Z., Yang, B., Guo, B., Lyu, Y., Wang, P., Yang, H., Li, Q., Wang, H., Liu, Z., and Nie, A., Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries, J. Power Sources, 2019, vol. 433, Article No. 126682.
  289. Shen, H., Huang, Y., Chang, Y., Hao, R., Ma, Z., Wu, K., Du, P., Guo, B., Lyu, Y., Wang, P., Yang, H., Li, Q., Wang, H.T., Liu, Z., and Nie, A., Narrowing working voltage window to improve layered GeP anode cycling performance for lithium-ion batteries, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 17466.
  290. Yang, F., Hong, J., Hao, J., Zhang, S., Liang, G., Long, J., Liu, Y., Liu, N., Pang, W.K., Chen, J., and Guo, Z., Ultrathin Few-Layer GeP Nanosheets via Lithiation-Assisted Chemical Exfoliation and Their Application in Sodium Storage, Adv. Energy Mater., 2020, vol. 10, Article No. 1903826.
  291. Nam, K.-H., Jeon, K.-J., and Park, C.-M., Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries, Energy Storage Mater., 2019, vol. 17, p. 78.
  292. Wang, T., Zhang, K., Park, M., Lau, V., Wang, H., Zhang, J., Zhang, J., Zhao, R., Yamauchi, Y., and Kang, Y., Highly Reversible and Rapid Sodium Storage in GeP3 with Synergistic Effect from Outside-In Optimization, ACS Nano, 2020, vol. 14, p. 4352.
  293. Qi, W., Zhao, H., Wu, Y., Zeng, H., Tao, T., Chen, C., Kuang, C., Zhou, S., and Huang, Y., Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage, Sci. Rep., 2017, vol. 7, Article No. 43582.
  294. Kim, D., Zhang, K., Lim, J.-M., Lee, G.-H., Cho, K., Cho, M., and Kang, Y.-M., GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions, Mater. Today Energy, 2018, vol. 9, p. 126.
  295. Li, W., Li, H., Lu, Z., Gan, L., Ke, L., Zhai, T., and Zhou, H., Layered Phosphorus-Like GeP5: a Promising Anode Candidate with High Initial Coulombic Efficiency and Large Capacity for Lithium Ion Batteries, Energy Environ. Sci., 2015, vol. 8, p. 3629.
  296. Li, W., Ke, L., Wei, Y., Guo, S., Gan, L., Li, H., Zhai, T., and Zhou, H., Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage, J. Mater. Chem. A, 2017, 5, 4413–4420.
  297. Liu, Y., Xiao, X., Fan, X., Li, M., Zhang, Y., Zhang, W., and Chen, L., GeP5/C composite as Robustanode material for high power sodium-ion batteries with exceptional capacity, J. Alloys Compds., 744 (2018) 15–22.
  298. Haghighat-Shishavan, S., Nazarian-Samani, M., Nazarian-Samani, M., Roh, H.-K., Chung, K.-Y., Oh, S.-H., Cho, B.-W., Kashani-Bozorg, S.F., and Kim, K.-B., Exceptionally Reversible Li-/Na-Ion Storage and Ultrastable Solid-Electrolyte Interphase in Layered GeP5 Anode, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 32815.
  299. Ning, Q.-L., Hou, B.-H., Wang, Y.-Y., Liu, D.-S., Luo, Z.-Z., Li, W.-H., Yang, Y., Guo, J.-Z., and Wu, X.-L., A Hierarchical GeP5/Carbon Nanocomposite with Dual-Carbon Conductive Network as Promising Anode Material for Sodium Ion Batteries, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 36902.
  300. Wei, Y., Chen, J., He, J., Qin, R., Zheng, Z., Zhai, T., and Li, H., Morphology Processing by Encapsulating GeP5 Nanoparticles into Nanofibers toward Enhanced Thermo/Electrochemical Stability, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 32162.
  301. Yan, Y., Ruan, J., Xu, H., Xu, Y., Pang, Y., Yang, J., and Zheng, S., Fast and Stable Batteries with High Capacity Enabled by Germanium–Phosphorus Binary Nanoparticles Embedded in a Porous Carbon Matrix via Metallothermic Reduction, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 21579.
  302. Boland, J.B., Tian, R., Harvey, A., Vega-Mayoral, V., Griffin, A., Horvath, D.V., Gabbett, C., Breshears, M., Pepper, J., Li, Y., and Coleman, J.N., Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications, 2D Materials, 2020, vol. 7, no. 3, Article No. 035015.
  303. Chen, X., Zhou, J., Li, J., Luo, H., Mei, L., Wang, T., Zhu, J., and Zhang, Y., A germanium and zinc chalcogenide as an anode for a high-capacity and long cycle life lithium battery, RSC Adv., 2019, vol. 9, p. 35045.
  304. Fu, L., Zhang, C., Chen, B., Zhang, Z., Wang, X., Zhao, J., He, J., Du, H., and Cui, G., Graphene boosted Cu2GeS3 for advanced lithium-ion batteries, Inorg. Chem. Front., 2017, vol. 4, p. 541.
  305. Li, C.C., Wang, B., Chen, D., Gan, L., Feng, Y., Zhang, Y., Yang, Y., Geng, H., Rui, X., and Yu, Y., Topotactic Transformation Synthesis of 2D Ultrathin GeS2 Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries, ACS Nano, 2020, vol. 14, p. 531.
  306. Wang, M., Zheng, H., Zhan, W., Luo, Q., and Tang, K., Facile Scalable Synthesis of Carbon-Coated Ge@C and GeX@C (X = S, Se) Anodes for High Performance Lithium-Ion Batteries, ChemistrySelect, 2019, vol. 4, p. 6587.
  307. Wang, B., Du, W., Yang, Y., Zhang, Y., Zhang, Q., Rui, X., Geng, H., and Lia, C.C., Two-dimensional germanium sulfide nanosheets as an ultra-stable and high capacity anode for lithium ion batteries, Chem. Eur. J., 2020, vol. 26, p. 6554.
  308. Kim, J.H., Yun, J.H., and Kim, D.K., A Robust Approach for Efficient Sodium Storage of GeS2 Hybrid Anode by Electrochemically Driven Amorphization, Adv. Energy Mater., 2018, vol. 8, Article No. 1703499.
  309. Das, J.K., Samantara, A.K., Sree Raj, K.A., Rout, C.S., and Behera, J.N., Synthesis of Ge4Se9 nano plates and its Reduced Graphene Oxide Composite for Electrochemical Energy Storage Application, Dalton Trans., 2019, vol. 48, p. 15955.
  310. He, C., Zhang, J.H., Zhang, W.X., and Li, T.T., GeSe/BP van der Waals Heterostructures as Promising Anode Materials for Potassium-Ion Batteries, J. Phys. Chem. C, 2019, vol. 123, p. 5157.
  311. Wang, K., Liu, M., Huang, D., Li, L., Feng, K., Zhao, L., Li, J., and Jiang, F., Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries, J. Colloid Interface Sci., 2020, vol. 571, p. 387.
  312. Zhang, W.X., He, W.H., Li, T.T., Zhao, J.W., and He, C., Theoretical prediction of germanium selenium nanosheet as a potential anode material for high-performance alkali-metal based battery, J. Solid State Chem., 2019, vol. 277, p. 17.
  313. Sung, G.-K., Ki-Hun Nam, K.-H., Choi, J.-H., and Park, C.-M., Germanium telluride: Layered high-performance anode for sodium-ion batteries, Electrochim. Acta, 2020, vol. 331, Article No. 135393
  314. Nam, K.-H., Sung, G.-K., Choi, J.-H., Youn, J.-.S., Jeon, K.-J., and Park, C.-M., New high-energy-density GeTe-based anodes for Li-ion batteries, J. Mater. Chem. A, 2019, vol. 7, p. 3278.
  315. Fu, L., Zheng, X., Huang, L., Shang, C., Lu, K., Zhang, X., Wei, B., and Xin Wang, X., Synthesis and Investigation of CuGeO3 Nanowires as Anode Materials for Advanced Sodium-Ion Batteries, Nanoscale Research Lett., 2018, vol. 13, p. 193.
  316. Meng, W.-J., Zhao, M., Yang, H.-X., Wu, Y.-Q., Pu, H., Gao, R.-Z., Yang, Y., and Zhao, D.-L., Synthesis of CuGeO3/reduced graphene oxide nanocomposite by hydrothermal reduction for high performance Li-ion battery anodes, Ceram. Int., 2020, vol. 46, p. 9249.
  317. Gao, G., Xiang, Y., Lu, S., Dong, B., Chen, S., Shi, L., Wang, Y., Wu, H., Li, Z., Abdelkader, A., Xi, K., and Ding, S., CTAB-assisted growth of self-supported Zn2GeO4 nanosheet network on a conductive foam as a binder-free electrode for long-life lithium-ion batteries, Nanoscale, 2018, vol. 10, p. 921.
  318. Gao, R., Liu, H., Fu, B., Li, S., Long, Z., Sun, D., and Song, Y., CoGeO2(OH)2 hydrangea assembled with 2D nanoplates towards application of lithium-ion batteries, J. Alloys Compds, 2020, vol. 820, Article No. 153295.
  319. Liu, X., Zai, J., Li, B., Zou, J., Ma, Z., and Xuefeng Qian, X., Na2Ge4O9 nanoparticles encapsulated in 3D carbon networks with long-term stability and superior rate capability in lithium ion batteries, J. Mater. Chem. A, 2016, vol. 4, p. 10552.
  320. Liu, B., Abouimrane, A., Balasubramanian, M., Ren, Y., and Amine, K., GeO2–SnCoC Composite Anode Material for Lithium-Ion Batteries, J. Phys. Chem. C, 2014, vol. 118, p. 3960.
  321. Fang, S., Shen, L., Nie, P., Xu, G., Yang, L., Zheng, H., and Zhang, X., Titanium Dioxide/Germanium Core–Shell Nanorod Arrays Grown on Carbon Textiles as Flexible Electrodes for High Density Lithium-Ion Batteries, Part. Part. Syst. Charact., 2015, vol. 32, p. 364.
  322. Kim, H., Kim, M.-C., Choi, S., Moon, S.-H., Kim, Y.-S., and Park, K.-W., Facile one-pot synthesis of Ge/TiO2 nanocomposite structures with improved electrochemical performance, Nanoscale, 2019, vol. 11, p. 17415.
  323. Liu, Q., Hou, J., Xu, C., Chen, Z., Qin, R., and Liu, H., TiO2 particles wrapped onto macroporous germanium skeleton as high performance anode for lithium-ion batteries, Chem. Eng. J., 2020, vol. 381, Article No. 122649.
  324. Wang, X., Fan, L., Gong, D., Zhu, J., Zhang, Q., and Lu, B., Core–Shell Ge@Graphene@TiO2 Nanofibers as a High-Capacity and Cycle-Stable Anode for Lithium and Sodium Ion Battery, Adv. Funct. Mater., 2016, vol. 26, p. 1104.
  325. Choe, H.-S., Kim, M.-C., Moon, S.-H., Kim, E.-S., Kim, S.-J., Lee, G.-H., Won, J.-E., and Park, K.-W., In-situ synthesis of Ge/Ti4O7 composite with enhanced electrochemical properties Ceram. Int., 2018, vol. 44, p. 663.
  326. Hsieh, M.-H., Li, G.-A., Chang, W.-C., and Tuan, H.-Y., A germanium nanoparticles/molybdenum disulphide (MoS2) nanocomposite as a high-capacity, high-rate anode material for lithium-ion batteries, J. Mater. Chem. A, 2017, vol. 5, p. 4114.
  327. Zhang, C.J., Chai, F.L., Fu, L., Hu, P., Pang, S.P., and Cui, G.L., Lithium storage in a highly conductive Cu3Ge boosted Ge/graphene aerogel, J. Mater. Chem. A, 2015, vol. 3, p. 22552.
  328. Chae, O.B., Park, S., Ku, J.H., Ryu, J.H., and Oh, S.M., Nano-scale uniform distribution of Ge/Cu3Ge phase and its electrochemical performance for lithium-ion batteries, Electrochim. Acta, 2010, vol. 55, p. 2894.
  329. Liang, J.W., Li, X.N., Hou, Z.G., Jiang, J., Hu, L., Zhang, W.Q., Zhu, Y.C., and Qian, Y.T., A composite structure of Cu3Ge/Ge/C anode promise better rate property for lithium battery, Small, 2016, vol. 12, p. 6024.
  330. Wang, X., Xu, X., Liu, J., Liu, Z., Shen, J., Li, F., Hu, R., Yang, L., Ouyang, L., and Zhu, M., Facile Synthesis of Peapod-Like Cu3Ge/Ge@C as A High Capacity and Long Life Anode for Li-Ion Batteries, Chem. Europ. J., 2019, vol. 25, p. 11486.
  331. Hao, Q., Liu, Q., Zhang, Y., Xu, C., and Hou, J., Easy preparation of nanoporous Ge/Cu3Ge composite and its high performances towards lithium storage, J. Colloid Interface Sci., 2019, vol 539, p. 665.
  332. Liu, X., Lin, N., Xu, K., Han, Y., Lu, Y., Zhao, Y., Zhou, J., Yi, Z., Cao, C., and Qian, Y., Cu3Ge/Ge@C nanocomposites crosslinked by the in situ formed carbon nanotubes for high-rate lithium storage, Chem. Eng. J., 2018, vol. 352, p. 206.
  333. Feng, J., Xia, H., Lai, M.O., and Lu, L., NASICON-Structured LiGe2(PO4)3 with Improved Cyclability for High-Performance Lithium Batteries, J. Phys. Chem. C, 2009, vol. 113, p. 20514.
  334. Gandi, S., Mekprasart, W., Pecharapa, W., Dutta, D.P., Jayasankar, C.K., and Ravuri, B.R., Na–Ge glass anode network mixed with bismuth oxide nanocrystallites: A high capacity anode material for use in advanced sodium-ion battery design, Mat. Chem. Phys., 2020, vol. 242, Article No. 122568.
  335. Moustafa, M.G., Sanad, M.M.S., and Hassaan, M.Y., NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries, J. Alloys Compds., 2020, vol. 845, Article No. 156338.
  336. Saverina, E.A., Kapaev, R.R., Stishenko, P.V., Galushko, A.S., Balycheva, V.A., Ananikov, V.P., Egorov, M.P., Jouikov, V.V., Troshin, P.A., and Syroeshkin, M.A., 2-Carboxyethylgermanium Sesquioxide as A Promising Anode Material for Li-Ion Batteries, ChemSusChem., 2020, vol. 13, p. 3137.
  337. Farbod, B., Cui, K., W. Kalisvaart, P., Kupsta, M., Beniamin Zahiri, B., Kohandehghan, A., Lotfabad, E.M., Li, Z., Luber, E.J., and Mitlin, D., Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys, ACS Nano, 2014, vol. 8, p. 4415.
  338. Hao, J., Liu, X., Li, N., Liu, X., Ma, X., Zhang, Y., Li, Y., and Zhao, J., Ionic liquid electrodeposition of 3D germanium–acetylene black–Ni foam nanocomposite electrodes for lithium-ion batteries, RSC Adv., 2014, vol. 4, p. 60371.
  339. Liu, X., Liu, Y.-S., Harris, M.M., Li, J., Wang, K.-X., and Chen, J.-S., Germanium nanoparticles supported by 3D ordered macroporous nickel frameworks as high-performance free-standing anodes for Li-ion batteries, Chem. Eng. J., 2018, vol. 354, p. 616.
  340. Wei, D., Zeng, S., Li, H., Li, X., Liang, J., and Qian, Y., Multiphase Ge-based Ge/FeGe/FeGe2/C composite anode for high-performance lithium ion batteries, Electrochim. Acta, 2017, vol. 253, p. 522.
  341. Yan, Y., Shi, Y., Wang, Z., Qin, C., and Zhang, Y., AlF3 microrods modified nanoporous Ge/Ag anodes fabricated by one-step dealloying strategy for stable lithium storage, Matt. Lett., 2020, vol. 276, Article No. 128254.
  342. Yue, C., Yu, Y., Sun, S., He, X., Chen, B., Lin, W., Xu, B., Zheng, M., Wu, S., Li, J., Kang, J., and Lin, L., High Performance 3D Si/Ge Nanorods Array Anode Buffered by TiN/Ti Interlayer for Sodium-Ion Batteries, Adv. Funct. Mat., 2015, vol. 25, p. 1386.
  343. Zhang, C., Pang, S., Kong, Q., Liu, Z., Hu, H., Jiang, W., Han, P., Wang, D., and Cui, G., An elastic germanium–carbon nanotubes–copper foam monolith as an anode for rechargeable lithium batteries, RSC Adv., 2013, vol. 3, p. 1336.