Статья
2020

Sustained Photovoltaic Effect from Nitrogen Rich Carbon Nitride (CNx) Prepared by Reactive Magnetron Sputtering


 Joshua C. Byers Joshua C. Byers , Claude Deslouis Claude Deslouis , Alain Pailleret Alain Pailleret , O. A. Semenikhin O. A. Semenikhin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520100031
Abstract / Full Text

Nitrogen rich carbon nitride (CNx) materials were prepared using reactive magnetron sputtering from a pure nitrogen plasma at elevated deposition pressures and low deposition powers. Solid-state photovoltaic devices utilizing such materials were prepared and characterized. As-prepared CNx materials showed photoconductive behaviour and no photovoltaic effect. This was attributed to the p-doping effect of oxygen present in as-prepared CNx films resulting in formation of a compensated semiconductor. However, upon thermal annealing, CNx materials showed a pronounced photovoltaic effect consistent with the n-type semiconductor behaviour. This result demonstrates that nitrogen rich carbon nitride is a promising photovoltaic material for all-carbon photovoltaic solar cells.

Author information
  • Department of Chemistry, The University of Western Ontario, N6A 5B7, London, Ontario, Canada

    Joshua C. Byers & O. A. Semenikhin

  • Département de chimie, Université du Québec à Montréal, Case postale 8888, succursale Centre-ville, H3C 3P8, Montréal, Québec, Canada

    Joshua C. Byers

  • Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques (LISE, UMR 8235), 4 place Jussieu, (case courrier 133), F-75005, Paris, France

    Claude Deslouis & Alain Pailleret

  • Department of Chemistry, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia

    O. A. Semenikhin

References
  1. Wang, G., Xing, W., and Zhuo, S., Electrochim. Acta, 2013, vol. 92, p. 269.
  2. He, M., Jung, J., Qiu, F., and Lin, Z., J. Mater. Chem., 2012, vol. 22, no. 46, p. 24254.
  3. Kwon, W., Kim, J.M., and Rhee, S.W., J. Mater. Chem. A, 2013, vol. 1, no. 10, p. 3202.
  4. Liu, J., Xue, Y., and Dai, L., J. Phys. Chem. Lett., 2012, vol. 3, no. 14, p. 1928.
  5. Zhang, D.W., Li, X.D., Li, H.B., Chen, S., Sun, Z., Yin, X.J., and Huang, S.M., Carbon, 2011, vol. 49, no. 15, p. 5382.
  6. Yin, Z., Sun, S., Salim, T., Wu, S., Huang, X., He, Q., Lam, Y.M., and Zhang, H., ACS Nano, 2010, vol. 4, no. 9, p. 5263.
  7. Zheng, Q., Fang, G., Cheng, F., Lei, H., Qin, P., and Zhan, C., J. Phys. D: Appl. Phys., 2013, vol. 46, no. 13.
  8. Salvatierra, R.V., Cava, C.E., Roman, L.S., and Zarbin, A.J.G., Adv. Funct. Mater., 2013, vol. 23, no. 12, p. 1490.
  9. Bernardi, M., Lohrman, J., Kumar, P.V., Kirkeminde, A., Ferralis, N., Grossman, J.C., and Ren, S., ACS Nano, 2012, vol. 6, no. 10, p. 8896.
  10. Jain, R.M., Howden, R., Tvrdy, K., Shimizu, S., Hilmer, A.J., McNicholas, T.P., Gleason, K.K., and Strano, M.S., Adv. Mater., 2012, vol. 24, no. 32, p. 4436.
  11. Tung, V.C., Huang, J.H., Kim, J., Smith, A.J., Chu, C.W., and Huang, J., Energy Environ. Sci., 2012, vol. 5, no. 7, p. 7810.
  12. Freitag, M., Low, T., Xia, F., and Avouris, P., Nature Photon., 2013, vol. 7, no. 1, p. 53.
  13. Wei, X., Qiu, Y., Duan, W., and Liu, Z., RSC Adv., 2015, vol. 5, no. 34, p. 26675.
  14. Xie, X., Fan, X., Huang, X., Wang, T., and He, J., RSC Adv., 2016, vol. 6, no. 12, p. 9916.
  15. Wang, Y., Wang, X., and Antonietti, M., Angew. Chem. – Int. Ed., 2012, vol. 51, no. 1, p. 68.
  16. Robertson, J. and Davis, C.A., Diamond Relat. Mater., 1995, vol. 4, no. 4, p. 441.
  17. Rodil, S.E. and Muhl, S., Diamond Relat. Mater., 2004, vol. 13, nos. 4–8, p. 1521.
  18. McCreery, R.L., Chem. Rev., 2008, vol. 108, no. 7, p. 2646.
  19. Zhang, J., Grzelczak, M., Hou, Y., Maeda, K., Domen, K., Fu, X., Antonietti, M., and Wang, X., Chem. Sci., 2012, vol. 3, no. 2, p. 443.
  20. Ramuz, M. P., Vosgueritchian, M., Wei, P., Wang, C., Gao, Y., Wu, Y., Chen, Y., and Bao, Z., ACS Nano, 2012, vol. 6, no. 11, p. 10384.
  21. Yin, Z., Zhu, J., He, Q., Cao, X., Tan, C., Chen, H., Yan, Q., and Zhang, H., Adv. Energy Mater., 2014, vol. 4, no. 1.
  22. Byers, J.C., Billon, F., Debiemme-Chouvy, C., Deslouis, C., Pailleret, A., and Semenikhin, O.A., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 9, p. 4579.
  23. Byers, J.C., Tamiasso-Martinhon, P., Deslouis, C., Pailleret, A., and Semenikhin, O.A., J. Phys. Chem. C, 2010, vol. 114, no. 43, p. 18474.
  24. Xu, J., Brenner, T.J.K., Chabanne, L., Neher, D., Antonietti, M., and Shalom, M., J. Am. Chem. Soc., 2014, vol. 136, no. 39, p. 13486.
  25. Aono, M., Harata, T., Kitazawa, N., and Watanabe, Y., Jpn. J. Appl. Phys., 2016, vol. 55, no. 1.
  26. Gupta, R.K., Al-Ghamdi, A.A., El-Tantawy, F., Farooq, W.A., and Yakuphanoglu, F., Mater. Lett., 2014, vol. 134, p. 149.
  27. Zhang, Y., Schnepp, Z., Cao, J., Ouyang, S., Li, Y., Ye, J., and Liu, S., Sci. Rep., 2013, vol. 3, p. 2163.
  28. Kaltofen, R., Sebald, T., and Weise, G., Thin Solid Films, 1996, vol. 290-291, p. 112.
  29. Miyaji, M.A.Y., Tison, Y., Giusca, C.E., Stolojan, V., Watanabe, H., Habuchi, H., Henley, S.J., Shannon, J.M., and Silva, S.R.P., Carbon, 2011, vol. 49, no. 15, p. 5229.
  30. Yang, F., Kuznietsov, V., Lublow, M., Merschjann, C., Steigert, A., Klaer, J., Thomas, A., and Schedel-Niedrig, T., J. Mater. Chem. A, 2013, vol. 1, p. 6407.
  31. Michaelson, H.B., J. Appl. Phys., 1977, vol. 48, no. 11, p. 4729.
  32. Huang, J., Miller, P.F., Wilson, J.S., De Mello, A.J., De Mello, J.C., and Bradley, D.D.C., Adv. Funct. Mater., 2005, vol. 15, no. 2, p. 290.
  33. Yeh, T.F., Syu, J.M., Cheng, C., Chang, T.H., and Teng, H., Adv. Funct. Mater., 2010, vol. 20, no. 14, p. 2255.
  34. Wang, H., Maiyalagan, T., and Wang, X., ACS Catal., 2012, vol. 2, no. 5, p. 781.