Статья
2017

Effect of temperature and charge stand on electrochemical performance of fiber Nickel–Cadmium cell


M. Senthilkumar M. Senthilkumar , K. Tanuja K. Tanuja , T. V. S. L. Satyavani T. V. S. L. Satyavani , V. Ramesh Babu V. Ramesh Babu , S. V. Naidu S. V. Naidu
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517020112
Abstract / Full Text

The effect of temperature and charge stand periods on the discharge capacity of Nickel–Cadmium (Ni–Cd) cell is investigated quantitatively. 15 A h Ni–Cd cells with NiOOH cathode and Cd anode were used as test system. The cells were charged in two step constant current modes up to 1.7 V, then stored at different temperatures from–20 to 60°C for charge stand periods of 1 day, 7 days and 15 days and discharged at 1 С rate current until the cell voltage reached 1.0 V. Although the discharge capacity of these cells at and around room temperature i.e., 10 to 30°C is good, at temperatures below 0°C and above 40°C, the performance is poor. Also from 40 to 60°C, the discharge capacities decreased with charge stand periods due to self discharge and for sub ambient temperature decrease in capacity is minimal.

Author information
  • Naval Science and Technological Laboratory, Visakhapatnam, 530027, India

    M. Senthilkumar, T. V. S. L. Satyavani & V. Ramesh Babu

  • Department of Chemical Engineering, Andhra University, Visakhapatnam, 530003, India

    K. Tanuja & S. V. Naidu

References
  1. Bauer, P., Batteries for Space Power Systems, NASA, 1968, SP-172.
  2. Falk, U. and Salkind, A.J., Alkaline Storage Batteries, John Wiley & Sons, Inc., 1969, p. 125.
  3. Shukla, A.K., Venugopalan, S., and Hariprakash, B., J. Power Sources, 2001, vol. 100, p. 125.
  4. Wenzl, H., Encyclopedia of Electrochemical Power Sources, 2009, vol. 1, p. 407.
  5. Jiang, J. and Zhang, C., Fundamentals and Applications of Lithium Ion Batteries in Electric Drive Vehicles, Singapore: Wiley, 2015, p. 15.
  6. Rao, R., Vrudhula, S., and Rakhmatov, D., IEEE Comput., 2003, vol. 36, p. 1019.
  7. Linden, D. and Thomas, B.R., Handbook of Batteries and Fuel Cells, N.Y.: McGraw-Hill, 2001, p. 82.
  8. Bernard, P., Encyclopedia of Electrochemical Power Sources, 2009, vol. 4, p. 459.
  9. Shirinsky, S.V., Aerospace Engg. Tech., 2012, vol. 2, p. 37.
  10. See, D.M. and White, R.E., J. Chem. Eng. Data, 1997, vol. 42, p. 1266.
  11. Levina, G.A., Arkhangel’skaya, Z.P., Bessonova, T.M., Varypaeva, E.N., and Volkova, N.O., Khim. Istochniki Toka, 1987, vol. 12, p. 85.
  12. Haifeng, D., Xuezhe, W., and Zechang, S., Proc. 5th IEEE Veh. Power andPropuls. Conf., Dearborn, MI, USA, 2009, p. 1649.
  13. Shukla, A.K., Venugopalan, S., and Hariprakash, B., Encyclopedia of Electrochemical Power Sources, 2009, vol. 4, p. 452.
  14. Brodd, R.J., Encyclopedia of Electrochemical Power Sources, 2009, vol. 4, p. 254.