Electrochemical Properties of LiAsF6 Solutions in Propylene Carbonate—Acetonitrile Binary Mixtures

E. Yu. Tyunina E. Yu. Tyunina , M. D. Chekunova M. D. Chekunova
Российский электрохимический журнал
Abstract / Full Text

Conductivity of LiAsF6 solutions in propylene carbonate—acetonitrile binary mixtures containing 0.2 to 1.4 mol/kg of ionophore is measured at temperatures of 283.15, 293.15, 303.15, and 313.15 K throughout the mixed solvent entire composition range. Concentration dependences of the system’s conductivity can be described by the Casteel—Amis equation, except the lithium hexafluoroarsenate solution in acetonitrile. The activation energy of the charge transfer process in the studied solutions is determined; the LiAsF6 solution in acetonitrile has the lowest activation energy. From conductometry measurements in dilute solutions, the electrolyte limiting molar conductivity is calculated using the Lee—Wheaton equation. The LiAsF6 ionic association in the propylene carbonate—acetonitrile mixtures with the acetonitrile mole fraction from 0.2093 to 0.9006 is not observed; the salt is fully dissociated over this concentration range. The electrochemical stability range for 0.5 mol/kg LiAsF6 in the propylene carbonate—acetonitrile mixture was determined by means of voltammetry at 298.15 K. The decomposition potentials in the cathodic region are due to lithium electro-deposition; they depend on ion—molecule and intermolecular interactions in the system; the anodic decomposition potentials are associated with the solvent oxidation.

Author information
  • G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, 153045, Russia

    E. Yu. Tyunina

  • Ivanovo State Polytechnic University, Ivanovo, 153000, Russia

    M. D. Chekunova

  1. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-based Rechargeable Batteries, Chem. Rev., 2004, vol. 104, p. 4303.
  2. Karapetyan, Yu.A. and Eychic, V.N., Physico-chemical Properties of Electrolytic Nonaqueous Solutions (in Russian), Moscow: Khimiya, 1989.
  3. Izutsu, K., Electrochemistry in Nonaqueous Solutions, Weinheim: Wiley-VCH, 2002.
  4. Zhang, S., Tsuboi, A., Nakata, H., and Ishikawa, T., Database and models of electrolyte solutions for lithium battery, J. Power Sources, 2001, vol. 97–98, p. 584.
  5. Topics in Current Chemistry, Boschke, F., Ed., vol. 27, Berlin: Springer, 1972.
  6. Ritchie, A.G., Recent developments and future prospects for lithium rechargeable batteries, J. Power Sources, 2001, vol. 96, p. 1.
  7. Yarmolenko, O.V., Yudina, A.V., and Khatmullina, K.G., Nanocomposite polymer electrolytes for lithium power sources (review), Russ. J. Electrochem., 2018, vol. 54. p. 325.
  8. Kitazawa, Y., Iwato, K., Kido R., Imaizumi, S., Tsuzuki, S., Shinoda, W., Ueno, K., Mandai, T., Kokubo, H., Dokko, K., and Watanabe, M., Polymer electrolytes containing solvate ionic liquids: A new approach to achieve high ionic conductivity, thermal stability, and a wide potential window, Chem. Mater., 2018, vol. 30, p. 252.
  9. Seo, D.M., Reininger, S., Kutcher, M., Redmond, K., Euler, W.B., and Lucht, B.L., Role of mixed solvation and ion pairing in the solution structure of lithium ion battery electrolytes, J. Phys. Chem. C., 2015, vol. 119, p. 14038.
  10. Bolloli, M., Kalhoff, J., Alloin, F., Bresser, D., Le, M.L.Ph., Langlois, B., Passerini, S., and Sanchez, J.-Y., Fluorinated carbamates as suitable solvents for LiTFSl-based lithium-ion electrolytes: Physico-chemical properties and electrochemical characterization, J. Phys. Chem. C., 2015, vol. 119, p. 22404.
  11. Ueno, K., Murai, J., Ileda, K., Tsuzuki, S., Tsuchiya, M., Tatara, R., Mandai, T., Umebayashi, Y., Dokko, K., and Watanabe, M., Li+ solvation and ionic transport in lithium solvate ionic liquids diluted by molecular solvents, J. Phys. Chem. C, 2016, vol. 120, p. 15792.
  12. Croce, F., Appetecchi, G.B., Mustarelli, P., Quartarone, E., Tomasi, C., and Cazzanelli, E., Investigation of ion dynamics in LiClO4/EC/PC highly concentrated solutions by ionic conductivity and DSC measurements, Electrochim. Acta, 1998, vol. 43, p. 1441.
  13. Safonov, V.A., Choba, M.A., Petrii, O.A., The difference between interfaces formed by mechanically renewed gold and silver electrodes with acetonitrile and aqueous solutions, J. Electroanal. Chem., 2018, vol. 808, p. 278.
  14. Yarmolenko, O.V., Tulibaeva, G.Z., Petrova, G.N., Shestakov, A.F., Shuvalova, N.I., Martinenko, V.M., and Efimov, O.N., Experimental and theoretical investigation of γ-butyrolactone decomposition on lithium electrode surface. Effect of Li3N, Russ. Chem. Bull., 2010, vol. 59, p. 510.
  15. Erkabaev, A.M., Yaroslavtseva, T.V., Bushkova, O.V., and Popov, S.E., IR spectroscopic and quantum-chemical investigation of perchlorate anion salvation in acetonitrile, Russ. J. Phys. Chem. A, 2015, vol. 89, p. 76.
  16. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 2014, vol. 114, p. 11503.
  17. Tarasevich, M.R., Andreev, V.N., Korchagin, O.V., and Tripachev, O.V., Lithium—oxygen (aerial) current sources (current state and prospects), Prot. Metals Physical Chem. Surf., 2017, vol. 53, p. 3.
  18. Cedzynska, K., Parker, A.J., and Singh, P., LiAsF6 in propylene carbonate—acetonitrile for primary lithium batteries, J. Power Sources, 1983, vol. 10, p. 13.
  19. Aravindan, V., Gnanaraj, J., Madhavi, S., and Liu, H.-K., Lithium-ion conducting electrolyte salts for lithium batteries, Chem. Eur. J., 2011, vol. 17, p. 14326.
  20. Younesi, R., Veith, G.M., Johansson, P., Edstrombe, K., and Veggea, T., Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S, Energy Environ. Sci., 2015, vol. 8, p. 1905.
  21. Henderson, W.A. Nonaqueous Electrolytes: Advances in lithium salts. Electrolytes for lithium and lithium-ion batteries, vol. 58, New York: Springer, 2014.
  22. Gores, H.J., Barthel, J., Zugmann, S., Moosbauer, D., Amereller, M., Hartl, R., and Maurer, A., Liquid Nonaqueous Electrolytes. Handbook of Battery Materials, Weinheim: Wiley-VCH, 2011.
  23. Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovolsky, Yu.A., New lithium salts in electrolytes for lithium-ion batteries (review), Russ J. Electrochem., 2017, vol. 53, p. 677.
  24. Yarmolenko, O.V., Yudina, A.V., and Ignatova, A.A., The state-of-the art and prospects for the development of electrolyte systems for lithium power sources, Elektrokhim. Energetika (in Russian), 2016, vol. 16, p. 155.
  25. Das, B., Saha, N., and Hasra, D.K., Ionic association and conductances of some symmetrical tetraalkylammonium salts in methanol, acetonitrile, and methanol (1) + acetonitrile (2) mixtures at 298.15 K, J. Chem. Eng. Data, 2000, vol. 45, p. 353.
  26. Sengwa, R.J., Khatri, V., Choudhary, Sh., Sankhla, S., Temperature dependent static dielectric constant and viscosity behaviour of glycerol-amide binary mixtures: Characterization of dominant complex structures in dielectric polarization and viscous flow processes, J. Mol. Liq., 2010, vol. 154, p. 117.
  27. Iloukhani, H., Rakhsi, M., Excess molar volumes, and refractive indices for binary and ternary mixtures of {cyclohexanone (1) + N, N-dimethylacetamide (2) + N, N-diethylethanolamine (3) (298.15, 308.15, and 318.15) K, J. Mol. Liq., 2009, vol. 149, p. 86.
  28. Barthel, J., Neueder, R., and Roch, H., Density, relative permittivity, and viscosity of propylene carbonate + dimethoxyethane mixtures from 25 to 125°C, J. Chem. Eng. Data, 2000, vol. 45, p. 1007.
  29. Kinart, C.M., Maj, M., Ćwiklińska, A., and Kinart, W.J., Densities, viscosities and relative permittivities of some n-alkoxyethanols with sulfolane at T = 303.15 K, J. Mol. Liq., 2008, vol. 139, p. 1.
  30. Neale, A.R., Schütter, Ch., Wilde, P., Goodrich, P., Hardacre, Ch., Passerini, S., Balducci, A., and Jacquemin, J., Physico-chemical characterization of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide and aliphatic nitrile solvents as potential electrolytes for electrochemical energy storage applications, J. Chem. Eng. Data, 2017, vol. 62, p. 376.
  31. Cecchetto, L., Salomon, M., Scrosati, B., and Croce, F., Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid, J. Power Sources, 2012, vol. 213, p. 233.
  32. Parker, A.J., Singh, P., Fraze, E.J., The cycling behaviour and stability of the lithium electrode in pro-pylene carbonate and acetonitrile electrolytes, J. Power Sources, 1983, vol. 10, p. 1.
  33. Afanas’ev, V.N., Zyat’kova, L.A., Tyunina, E.Yu., and Chekunova, M.D., Solvation interactions in solutions of lithium hexafluoroarsenate in propylene carbonate, Russ. J. Electrochem., 2001, vol. 37, p. 46.
  34. Afanasyev, V.N. and Zyatkova, L.A., Speed of sound, densities, and viscosities for solutions of lithium hexafluoroarsenate in tetrahydrofuran at 283.15, 298.15 and 313.15 K, J. Chem. Eng. Data, 1996, vol. 41, p. 1315.
  35. Nichugovskii, G.F., Determination of the Humidity of Chemicals (in Russian), Leningrad: Khimiya, 1977.
  36. Hopkins, H.P., Jr., Jahagirdar, D.V., and Norman, A.B., Conductance studies of lithium salt — acetonitrile solutions at 25°C, J. Solution Chem., 1979, vol. 8, p. 147.
  37. Salomon, M., Conductance of soltions of lithium bis(trifluoromethanesulfone)imide in water, propylene carbonate, acetonitrile and methyl formate at 25°C, J. Solution Chem., 1993, vol. 22, p. 715.
  38. Salomon, M. and Plichta, E., Conductivities and ion association of 1:1 electrolytes in mixed aprotic solvents, Electrochim. Acta, 1983, vol. 28, p. 1681.
  39. Barthel, J., Gores, H.-J., Carlier, P., Feuerlein, F., and Utz, M., The temperature dependence of the properties of electrolyte solutions. V. Determination of the glass transition temperature and comparison of the temperature coefficients of electrolyte conductance and solvent viscosity of propylene carbonate solutions, Ber. Bunsenges. Phys. Chem., 1983, vol. 87, p. 436.
  40. Gordon, A.J. and Ford, R.A., The Chemist’s Companion. A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.
  41. Tyunina, E.Yu., Afanasiev, V.N., Chekunova, M.D., Electrochemical characteristics of propylene carbonate solutions of tetraethylammonium tetrafluoroborate, Russ. J. Electrochem., 2013, vol. 49, p. 453.
  42. Barthel, J., Feuerlein, F., Neueder, N., and Wachter, R., Calibration of conductance cells at various temperatures, J. Solution Chem., 1980, vol. 9, p. 209.
  43. Jones, G. and Prendergast, M.J., The measurement of the conductance of electrolytes. VIII. A redetermination of the conductance of Kohlrausch’s standard potassium chloride solutions in absolute units, J. Amer. Chem. Soc., 1937, vol. 59, p. 731.
  44. Fialkov, Yu.Ya. and Grischenko, V.F., Electrovedelenie metallov iz nevodnih rastvorov (in Russian), Kiev: Naukova dumka, 1985.
  45. Lee, W.H., Wheaton, R.J., Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part.1. Relaxation terms, J. Chem. Soc. Faraday Trans. 2, 1978, vol. 74, p. 743.
  46. Lee, W.H., Wheaton, R.J., Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 2. Hydrodynamic terms and complete conductance equation, J. Chem. Soc. Faraday Trans. 2, 1978, vol. 74, p. 1456.
  47. Lee, W.H., Wheaton, R.J., Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 3. Examination of new model and analysis of data for symmetrical electrolytes, J. Chem. Soc. Faraday Trans. 2, 1979, vol. 75, p. 1128.
  48. Pethybridze, A.D., Taba, S.S., Precise conductimetric studies on aqueous solutions of 2: 2 electrolytes. Part 2. Analysis of data for MgSO4 in terms of new equations from Fuoss and from Lee and Wheaton, J. Chem. Soc. Faraday Trans. Part 1, 1980, vol. 76, p. 368.
  49. Artemkina, Yu.M., Voroshilova, Yu.V., Pleshkova, N.V., Kalugin, O.N., Seddon, K.R., and Shcherbakov, V.V., Association of some ionic liquids in acetonitrile according to conductometric measurements (in Russian), Uspekhi khim. khim. tekhnol, 2008, vol. 22, p.11.
  50. Tyunina, E.Yu., Afanasiev, V.N. and Chekunova, M.D., Electroconductivity of tetraethylammonium tetrafluoroborate in propylene carbonate at various temperatures, J. Chem. Eng. Data, 2011, vol. 56, p. 3222.
  51. D’Arprano, A., Sesta, B., Mauro, V., Salomon, M., Interactions between tetra(trisfluoromethylsulfonyl)-1,4,8,11-tetraazocyclotetradecane and perchlorate anion in propylene carbonate, nitromethane, acetonitrile, and tetrahydrofuran, J. Solution Chem., 2000, vol. 29, p. 1075.
  52. Tyunina, E.Yu. and Chekunova, M.D., Physicochemical properties of binary solutions of propylene carbonate—acetonitrile in the range of 253.15–313.15 K, Russ. J. Phys. Chem. A, 2017, vol. 91, p. 894.
  53. Casteel, J.F. and Amis, E.S., Specific conductance of concentrated solutions of magnesium salts in water-ethanol system, J. Chem. Eng. Data, 1972, vol. 17, p. 55.
  54. Moumouzias, G., Ritzoulis, G., Siapkas, D., and Terzidis, D., Coparative study of LiBF4, LiAsF6, LiPF6, and LiClO4 as electrolytes in propylene carbonate—diethyl carbonate solutions for Li/LiMn2O4 cells, J. Power Sources, 2003, vol. 122, p. 57.
  55. Berhaut, C.L., Porion, P., Timperman, L., Schmidt, G., Lemordant, D., and Anouti, M., LiTDI as electrolyte salt for Li-ion batteries: transport properties in EC/DMC, Electrochim. Acta, 2015, vol. 180, p. 778.
  56. Artemkina, Y.M. and Shcherbakov, V.V., Electrical conductivity of associated electrolyte-water systems, Russ. J. Inorg. Chem., 2010, vol. 55, p. 1487.
  57. Erdey-Gruz, T., Transport Phenomena in Aqueous Solutions, Budapest: Akademiai Kiado, 1974. 420 p.
  58. Glasstone, S., Laidler, K., and Eyring, H., The Theory of Rate Processes, New York: McGraw-Hill, 1941.
  59. Chagnes, A., Carre, B., Willman, P., and Lemordant, D., Ion transport theory of nonaqueous electrolytes. LiClO4 in γ-butyrolactone: the quasi lattice approach, Electrochim. Acta, 2001, vol. 46, p. 1783.
  60. Tyunina, E.Yu. and Chekunova, M.D., Electrocon-ductivity of solutions of LiAsF6 in aprotic solvents with different permittivity, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2015, vol. 58, p.112.
  61. Afanas’yev, V.N., Zyat’kova, L.A., and Chekunova, M.D., Temperature dependence of transport properties and ion-molecular forms of LiAsF6 in γ-butyrolactone, Russ. J. Electrochem., 2002, vol. 38, p. 781.]
  62. Electrochemistry of metals in non-aqueous solutions (in Russian), Kolotirkin, Ya.M., Ed., Moscow: Mir, 1974.
  63. Izmailov, N.A., Electrochemistry of solutions (in Russian), Moscow: Khimiya, 1966.
  64. Kanamura, K., Umegaki, T., Ohashi, M., Toriyama, Sh., Shiraishi, S., and Takehara, Z., Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 thin film electrode for lithium batteries, Electrochim. Acta, 2001, vol. 47, p. 433.
  65. Yuan, K., Bian, H., Shen, Y., Jiang, B., Li, J., Zhang, Y., Chen, H., and Zheng, J., Coordination number of Li+ in nonaqueous electrolyte solutions determined by molecular rotational measurements, J. Phys. Chem. B, 2014, vol. 118, p. 3689.
  66. Ohtaki, H., Structural studies on salvation and complexation of metal ions in nonaqueous solution, Pure. Appl. Chem., 1987, vol. 59, p. 1143.
  67. Spångberg, D., Cation solvation in water and acetonitrile from theoretical calculations, Acta Universitatis Upsaliensis. Uppsala, 2003, 50 p.
  68. Iida, M., Mogi, K., and Yokoyama, H., Conductivity and solvation of Li+ ions of LiPF6 in propylene carbonate solutions, J. Phys. Chem. B, 2000, vol. 104, p. 5040.