A Novel Screen-Printed and Carbon Paste Electrodes for Potentiometric Determination of Uranyl(II) Ion in Spiked Water Samples

Tamer Awad Ali Tamer Awad Ali , Gehad G. Mohamed Gehad G. Mohamed , Refat F. Aglan Refat F. Aglan , Mai A. Mourad Mai A. Mourad
Российский электрохимический журнал
Abstract / Full Text

Four new ion-selective electrodes (ISEs) based on poly-(1-4)-2-amino-2-deoxy-β-D-glucan (chitosan) ionophore were constructed for determination of uranyl ion (UO2(II)) over wide concentration ranges. The linear concentration range for carbon paste electrodes (CPEs) was 1 × 10–6–1 × 10–2 mol/L with a detection limit of 1 × 10–6 mol/L and that for the screen-printed electrode (SPEs) was 1 × 10–5–1 × 10–1 mol/L with a detection limit of 8 × 10–6 mol/L. The slopes of the calibration graphs were 29.90 ± 0.40 and 29.10 ± 0.60 mV/decade for CPEs with dibutylphthalate (DBP) (electrode I) and o-nitrophenyloctylether (o-NPOE) (electrode II) as plasticizers, respectively. Also, the SPEs showed good potentiometric slopes of 29.70 ± 0.30 and 28.20 ± 1.20 mV/decade with DBP (electrode III) and o-NPOE (electrode IV), respectively. The electrodes showed stable and reproducible potential over a period of 54, 62, 101 and 115 days for electrodes I, II, III, and IV, respectively. The electrodes manifested advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations except Ce(III) ion which interfere seriously. The results obtained compared well with those obtained using atomic absorption spectrometry.

Author information
  • Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt

    Tamer Awad Ali

  • Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt

    Gehad G. Mohamed & Mai A. Mourad

  • Hot Laboratory Center, Atomic Energy Authority, P.O. Box, Cairo, 13759, Egypt

    Refat F. Aglan

  1. Dawson, J., Smith, V., Clifford, J., and Williams, S.J., Initial studies on the effects of radiation, thermal ageing and aqueous environments on the stability and structure of candidate polymeric encapsulant materials, Mineral. Magazine, 2012, vol. 76, pp. 2985–2994.
  2. Lind, O.C., Stegnar, P., Tolongutov, B., Rosseland, B.O., Strømman, G., Uralbekov, B., et al., Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan, J. Environ. Radioactiv., 2013, vol. 123, pp. 37–49.
  3. Lu, X., Zhou, X.J., and Wang, T.S., Mechanism of uranium( VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies, J. Hazardous Mater., 2013, vol. 262, pp. 297–303.
  4. Gilman, A.P., Villeuve, D.C., Secours, V.E., Yagminas, A.P., Tracy, B.L., Quinn, J.M., et al., Uranyl nitrate: 28-day and 91-day toxicity studies in the Sprague-Dawley rat, Toxicol. Sci., 1998, vol. 41, pp. 117–128.
  5. Murty, B.N., Jagannath, Y.V.S., Yadav, R.B., Ramamurty, C.K., and Syamsundar, S., Spectrophotometric determination of uranium in process streams of a uranium extraction plant, Talanta, 1997, vol. 44, pp. 283–295.
  6. Ioffe, B.L. and Kochurov, B.P., Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing 235U, 233U, and 232Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons, Phys. At. Nucl., 2012, vol. 75, pp. 160–162.
  7. Kusumoputro, B., Sutarya, D., and Na, L., Nuclear Power Plant Fuel’s Quality Classification Using Ensemble Back Propagation Neural Networks, 2013, pp. 367–371.
  8. Anirudhan, T.S., Bringle, C.D., and Rijith, S., Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay, J. Environ. Radioactiv., 2010;101:267–276.
  9. Anirudhan, T.S. and Radhakrishnan, P.G., Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater, J. Environ. Radioactiv., 2009, vol. 100, pp. 250–257.
  10. Biradar, P.M., Dhamole, P.B., Nair, R.R., Roy, S.B., Satpati, S.K., D’Souza, S.F., et al., Long-term stability of biological denitrification process for high strength nitrate removal from wastewater of uranium industry, Environ. Progress, 2008, vol. 27, pp. 365–372.
  11. Chernov, A., Uranium Production Plans and Developments in the Nuclear Fuel Industries of Ukraine, The Uranium Institute 23 Annual Symposium, 1998, pp. 329–335.
  12. Tan, K., Huang, Y., Wang, W., and Cai, G., Sustainable development of uranium industry from the ideas of ecological security, 2012, pp. 2935–2939.
  13. Kramareva, N.V., Stakheev, A.Y., Tkachenko, O.P., Klementiev, K.V., Grünert, W., and Finashina, E.D., Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure, J. Mol. Catal. A: Chem., 2004, vol. 209, pp. 97–106.
  14. Motawie, A.M., Mahmoud, K.F., El-Sawy, A.A., Kamal, H.M., Hefni, H., and Ibrahiem, H.A., Preparation of chitosan from the shrimp shells and its application for pre-concentration of uranium after crosslinking with epichlorohydrin, Egypt. J. Pet., 2014, vol. 23, pp. 221–228.
  15. Li-xia, W., Zi-wei, W., Guo-song, W., Xiao-dong, L., and Jian-guo, R., Catalytic performance of chitosan- Schiff base supported Pd/Co bimetallic catalyst for acrylamide with phenyl halide, Polym. Adv. Technol., 2010, vol. 21, pp. 244–249.
  16. Ji, X., Zhong, Z., Chen, X., Xing, R., Liu, S., and Wang, L., Preparation of 1,3,5-thiadiazine-2-thione derivatives of chitosan and their potential antioxidant activity in vitro, Bioorgan. Med. Chem. Lett., 2007, vol. 17, pp. 4275–4279.
  17. El Badawy, M., Chemical modification of chitosan: Synthesis and biological activity of new heterocyclic chitosan derivatives, Polym. Int., 2008, vol. 57, pp. 254–261.
  18. Liu, H., Zhao, Y., Cheng, S., Huang, N., and Leng, Y., Syntheses of novel chitosan derivative with excellent solubility, anticoagulation, and antibacterial property by chemical modification, J. Appl. Polym. Sci., 2012, vol. 124, pp. 2641–2648.
  19. Lee, Y.M. and Shin, E.M., Pervaporation separation of water-ethanol through modified chitosan membranes, IV: Phosphorylated chitosan membranes, J. Membr. Sci., 1991, vol. 64, pp. 145–152.
  20. Skorik, Y.A., Pestov, A.V., Kodess, M.I., and Yatluk, Y.G., Carboxyalkylation of chitosan in the gel state, Carbohydrate Polym., 2012, vol. 90, pp. 1176–1181.
  21. Atta, A.M., El-Mahdy, G.A., Al-Lohedan, H.A., and Ezzat, A.R.O., Synthesis of nonionic amphiphilic chitosan nanoparticles for active corrosion protection of steel, J. Mol. Liq., 2015, vol. 211, pp. 315–323.
  22. Shamsipur, M., Saeidi, M., Yari, A., Yaganeh-Faal, A., Mashhadizadeh, M.H., Azimi, G., et al., UO ionselective membrane electrode based on a naphtholderivative Schiff’s base 2,2'-[1,2-ethandiyl bis(nitriloethylidene)] bis(1-naphthalene), Bull. Korean Chem. Soc., 2004, vol. 25, pp. 629–33.
  23. Saleh, M.B., Hassan, S.S.M., Abdel Gaber, A.A., and Abdel Kream, N.A., A novel uranyl ion-selective PVC membrane sensor based on 5,6,7,8-tetrahydro-8-thioxopyrido[ 4',3',4,5]thieno[2,3-d]pyrimidine-4(3H)one, Sensor. Actuat. B: Chem., 2003, vol. 94, pp. 140–144.
  24. Arida, H.A.M. and Elsaied, A.M., A Novel bis-(acetylacetone)- p-phenylenediamine–uranyl ion sensing material based coated graphite rod electrode for uranyl ion, Anal. Lett., 2003, vol. 36, pp. 1079–1089.
  25. Jain, A.K., Gupta, V.K., Khurana, U., and Singh, L.P., A new membrane sensor for UOions based on 2-hydroxyacetophenoneoxime-thiourea-trioxane resin, Electroanalysis, 1997, vol. 9, pp. 857–860.
  26. Nassory, N.S., Uranium-sensitive electrodes based on the uranium–di(octylphenyl)phosphate complex as sensor and alkyl phosphate as mediator in a PVC matrix membrane, Talanta, 1989, vol. 36, pp. 672–674.
  27. Shamsipur, M., Soleymanpour, A., Akhond, M., Sharghi, H., and Massah, A.R., Uranyl-selective PVC membrane electrodes based on some recently synthesized benzo-substituted macrocyclic diamides, Talanta, 2002, vol. 58, pp. 237–246.
  28. Johnson, S., Moody, G.J., Thomas, J.D.R., Kohnke, F.H., and Stoddart, J.F., Poly(vinyl chloride) matrix membrane uranyl ion-selective electrodes based on cyclic and acyclic neutral carrier sensors, Analyst, 1989, vol. 114, pp. 1025–1028.
  29. Gupta, V.K., Mangla, R., Khurana, U., and Kumar, P., Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor, Electroanalysis, 1999, vol. 11, pp. 573–576.
  30. Duncan, D.M. and Cockayne, J.S., Application of calixarene ionophores in PVC based ISEs for uranium detection, Sensor. Actuat. B: Chem., 2001, vol. 73, pp. 228–235.
  31. Ramkumar, J. and Maiti, B., Nafion-coated uranyl selective electrode based on calixarene and tri-n-octyl phosphine oxide, Sensor. Actuat. B: Chem., 2003, vol. 96, pp. 527–532.
  32. Hajiaghababaei, L., Sharafi, A., Suzangarzadeh, S., and Faridbod, F., Mercury recognition: A potentiometric membrane sensor based on 4-(benzylidene amino)- 3,4-dihydro-6-methyl-3-thioxo-1,2,4-triazin-5(2H)one, Anal. Bioanal. Electrochem., 2013, vol. 5, pp. 481–493.
  33. Ali, T.A., Mohamed, G.G., El-Dessouky, M.M.I., Abou El Ella, S.M., and Mohamed, R.T.F., Modified carbon paste ion selective electrodes for the determination of iron(III) in water, soil and fish tissue samples, Int. J. Electrochem. Sci., 2013, vol. 8, pp. 1469–1486.
  34. Ali, T.A., Mohamed, G.G., El-Dessouky, M.M.I., Abou El-Ella, S.M., and Mohamed, R.T.F., Modified screen-printed electrode for potentiometric determination of copper(II) in water samples, J. Solution Chem., 2013, vol. 42, pp. 1336–1354.
  35. Frag, E.Y.Z., Ali, T.A., Mohamed, G.G., and Awad, Y.H.H., Construction of different types of ionselective electrodes. characteristic performances and validation for direct potentiometric determination of orphenadrine citrate, Int. J. Electrochem. Sci., 2012, vol. 7, pp. 4443–4464.
  36. Khaled, E., Mohamed, G.G., and Awad, T., Disposal screen-printed carbon paste electrodes for the potentiometric titration of surfactants, Sensor. Actuat., B: Chem., 2008, vol. 135, pp. 74–80.
  37. Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Al-Sabagh, A.M., and Migahed, M.A., New screenprinted ion-selective electrodes for potentiometric titration of cetyltrimethylammonium bromide in different civilic media, Electroanalysis, 2010, vol. 22, pp. 2587–2599.
  38. Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Al-Sabagh, A.M., Migahed, M.A., and Khaled, E., Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes, Anal. Chim. Acta, 2010, vol. 673, pp. 79–87.
  39. Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Migahed, M.A., and Al-Sabagh, A.M., Novel screenprinted electrode for the determination of dodecyltrimethylammonium bromide in water samples, Drug Testing Analysis, 2012, vol. 4, pp. 1009–1013.
  40. Mohamed, G.G., El-Shahat, M.F., Al-Sabagh, A.M., Migahed, M.A., and Ali, T.A., Septonex-tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations, Analyst, 2011, vol. 136, pp. 1488–1495.
  41. Ali, T.A., Mohamed, G.G., Azzam, E.M.S., and Abdelaal, A.A., Thiol surfactant assembled on gold nanoparticles ion exchanger for screen-printed electrode fabrication. Potentiometric determination of Ce(III) in environmental polluted samples, Sensor. Actuat. B: Chem., 2014, vol. 191, pp. 192–203.
  42. Betelu, S., Vautrin-Ul, C., Ly, J., and Chaussé, A., Screen-printed electrografted electrode for trace uranium analysis, Talanta, 2009, vol. 80, pp. 372–376.
  43. Wang, J., Baomin, T., and Setiadji, R., Disposable electrodes for field screening of trace uranium, Electroanalysis, 1994, vol. 6, pp. 317–320.
  44. Pérez-Iglesias, J., Seco-Lago, H., Fernández-Solís, J.M., Castro-Romero, J.M., and González-Rodríguez, V., Application of derivative spectrophotometry to simultaneous determination of nickel and mercury with diethylenetriaminepentaacetic acid (DTPA), Anal. Lett., 1997, vol. 30, pp. 317–325.
  45. Sadykov, I.I., Zinov’ev, V.G., and Sadykova, Z.O., Neutron activation analysis of manganese mercury telluride, J. Anal. Chem., 2005, vol. 60, pp. 946–950.
  46. Hirano, S., Kondo, Y., and Nakazawa, Y., Uranylchitosan complexes, Carbohydrate Res., 1982, vol. 100, pp. 431–434.
  47. Bakker, E., Bühlmann, P., and Pretsch, E., Carrierbased ion-selective electrodes and bulk optodes, 1: General characteristics, Chem. Rev., 1997, vol. 97, pp. 3083–3132.
  48. Mikhelson, K. and Peshkova, M., Advances and trends in ionophore-based chemical sensors, Russ. Chem. Rev., 2015, vol. 84, p. 555.
  49. Krayukhina, M.A., Samoilova, N.A., and Yamskov, I.A., Polyelectrolyte complexes of chitosan: formation, properties and applications, Russ. Chem. Rev., 2008, vol. 77, pp. 799–813.
  50. Frag, E.Y., Mohamed, G.G., and El-Sayed, W.G., Potentiometric determination of antihistaminic diphenhydramine hydrochloride in pharmaceutical preparations and biological fluids using screen-printed electrode, Bioelectrochemistry, 2011, vol. 82, pp. 79–86.
  51. Shokrollahi, A., Ghaedi, M., Montazerozohori, M., Khanjari, N., and Najibzadeh, M., Construction of a new uranyl-selective electrode based on a new ionophore: Comparison of the effect additive on electrode responses, J. Chin. Chem. Soc., 2009, vol. 56, pp. 812–821.
  52. Ghaedi, M., Montazerozohori, M., Khodadoust, S., and Behfar, M., Chemically modified multiwalled carbon nanotubes as efficient material for construction of new Al(III) ion selective carbon paste electrode, IEEE Sensors J., 2013, vol. 13, pp. 321–327.
  53. Zidan, W., Badr, I.H., and Akl, Z., Development of potentiometric sensors for the selective determination of U Oions, J. Radioanal. Nucl. Chem., 2015, vol. 303, pp. 469–477.
  54. Serebrennikova, N., Kukushkina, I., and Plotnikova, N., Ion selective membrane uranyl electrode based on mixture of uranyl di-2-ethylhexylphosphate with tributyl phosphate in benzene, J. Anal. Chem., 1982, vol. 37, pp. 645–649.
  55. Moody, G., Slater, J.M., and Thomas, J., Poly (vinyl chloride) matrix membrane uranyl ion-selective electrodes based on organophosphorus sensors, Analyst, 1988, vol. 113, pp. 699–703.
  56. Goldberg, I. and Meyerstein, D., Influence of ion exchanger and diluent structure on uranyl ion selective electrode response, J. Anal. Chem., 1980, vol. 52, pp. 2105–2108.
  57. Johnson, S., Moody, G., Thomas, J., Kohnke, F., and Stoddart, J., Poly (vinyl chloride) matrix membrane uranyl ion-selective electrodes based on cyclic and acyclic neutral carrier sensors, Analyst, 1989, vol. 114, pp. 1025–1028.
  58. Florido, A., Casas, I., García-Raurich, J., Arad-Yellin, R., and Warshawsky, A., Uranyl-selective electrode based on a new bifunctional derivative combining the synergistic properties of phosphine oxide and ester of phosphoric acid, J. Anal. Chem., 2000, vol. 72, pp. 1604–1610.
  59. Chen, H., Chen, J., Jin, X., and Wei, D., Determination of trace mercury species by high performance liquid chromatography-inductively coupled plasma mass spectrometry after cloud point extraction, J. Hazardous Mater., 2009, vol. 172, pp. 1282–1287.
  60. Rounaghi, G., Selective uranyl cation detection by polymeric ion selective electrode based on benzo-15- crown-5, Mater. Sci. Eng. C, 2011, vol. 31, pp. 1637–1642.