Examples



mdbootstrap.com



 
Статья
2018

The Effect of Sc2O3 on the Physicochemical Properties of Low-Melting Cryolite Melts КF–AlF3 and КF–NaF–AlF3


A. V. Rudenko A. V. Rudenko , O. Yu. Tkacheva O. Yu. Tkacheva , A. A. Kataev A. A. Kataev , A. A. Red’kin A. A. Red’kin , Yu. P. Zaikov Yu. P. Zaikov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518090100
Abstract / Full Text

Quasibinary phase diagrams of the system “low-melting cryolite–Sc2O3” the potential media for synthesizing alloyed alloys Al–Sc are plotted by the method of thermal analysis. The phase diagrams of (KF–NaF–AlF3)–Sc2O3 with different content of NaF and the cryolite ratio (CR) 1.3 and 1.5 are the diagrams with simple eutectics. The liquidus temperature of the (KF–AlF3)–Sc2O3 system increases with the increase in the Sc2O3 concentration due to the formation of a high-melting compound: potassium hexafluoroscandiate К3ScF6. The solubility of Sc2O3 in low-melting cryolite melts KF–NaF–AlF3 increases with the increase in temperature and CR. In contrast Al2O3, the solubility of Sc2O3 in melts containing KF–AlF3 with CR = 1.3–1.5 is much lower than in cryolite melts containing NaF. The conductivity of low-melting cryolite melts measured by the method of impedance spectroscopy decreases in proportion to the Sc2O3 concentration in the similar way as in salt melts containing Al2O3. Based on the experimental data obtained, the compositions of low-melting cryolite melts are proposed for the synthesis of doped Al–Sc alloys.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    A. V. Rudenko, O. Yu. Tkacheva, A. A. Kataev, A. A. Red’kin & Yu. P. Zaikov

  • Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, 620002, Russia

    O. Yu. Tkacheva & Yu. P. Zaikov

References
  1. Redkin, A., Apisarov, A., Dedyukhin, A., Kovrov, V., Zaikov, Yu., Tkacheva, O., and Hryn, J., Resent developments in low-temperature electrolysis of aluminum, ECS Trans., 2012, vol. 50, no. 11, p. 205.
  2. Apisarov, A.P., Dedyukhin, A.E., Red’kin, A.A., Tkacheva, O.Yu., and Zaikov, Yu.P., Physicochemical properties of KF-NaF-AlF3 molten electrolytes, Russ. J. Electrochem., 2010, vol. 46, p. 633.
  3. Danielik, V. and Hives J., Low-melting electrolyte for aluminum smelting, J. Chem. Eng. Data., 2004, vol. 49, p. 1414.
  4. Apisarov, A., Dedyukhin, A., Nikolaeva, E., Tinghaev, P., Tkacheva, O., Redkin, A., and Zaikov, Yu., Liquidus temperatures of cryolite melts with low cryolite ratio, Metall. Mater. Trans. B., 2011, vol. 42, p. 236.
  5. Grjotheim, K., Mikhaiel, S.A., Hytta, R., van der Hoeven, M., and Swahn, C.-G., Equilibrium studies in the systems K3AlF6–Na3AlF6 and K3AlF6–Rb3AlF6, Acta Chem. Scand., 1973, vol. 27, no. 4, p. 1299.
  6. Dedyukhin, A.E., Apisarov, A.P., Tkacheva, O.Yu., Red’kin, A.A., Zaikov, Yu.P., Frolov, A.V., and Gusev, A.O., Solubility of Al2O3 in molten system KF–NaF–AlF3, Rasplavy, 2009, no 2, p. 23.
  7. Yan, H., Yang, J., and Li, W., Alumina solubility in KF–NaF–AlF3-based low-temperature electrolyte, Metall. Mater.Trans. B., 2011, vol. 42B, p. 1065.
  8. Hives, J., Thonstad, J., Sterten, A., and Fellner, P., Electrical conductivity of molten cryolite-based mixtures obtained with a tube-type cell made of pyrolytic boron nitride, Light Met., 1994, p. 187.
  9. Apisarov, A.P., Kryukovskii, V.A., Zaikov, Yu.P., Red’kin, A.A., Tkacheva, O.Yu., and Khokhlov, V.A., Conductivity of low-temperature KF–AlF3 electrolytes containing lithium fluoride and alumina, Russ. J. Electrochem., 2007, vol. 43, p. 870.
  10. Dedyukhin, A., Apisarov, A., Tkacheva, O., Redkin, A., Zaikov, Yu., Frolov, A., and Gusev, A., Electrical conductivity of the (KF–AlF3)–NaF–LiF molten system with Al2O3 additions at low cryolite ratio, ECS Trans., 2009, vol. 16, no. 49, p. 317.
  11. Hives, J., Fellner, P., and Thonstand, J., Transport numbers in the molten system NaF–KF–AlF3–Al2O3, Ionics, 2013, vol. 19, p. 315.
  12. Yang, J., Hryn, J.N., Davis, B.R., Roy, A., Krumdick, G.K., and Pomykala, J.A., New opportunities for aluminum electrolysis with metal anode in a low temperature electrolyte system, Light Met., 2004, p. 321.
  13. Tkacheva, O., Hryn, J., Spangenberger, J., Davis, B., and Alcorn, T., Operating parameters of aluminum electrolysis in a KF–AlF3 based electrolyte, Light Met., 2012, p. 675.
  14. Hryn, J., Tkacheva, O., and Spangenberger, J., Initial 1000 A aluminum electrolysis testing in potassium cryolite-based electrolyte, Light Met., 2013, p. 1289.
  15. Zaikov, Yu., Khramov, A., Kovrov, V., Kryukovsky, V., Apisarov, A., Chemesov, O., Shurov, N., and Tkacheva, O., Electrolysis of aluminum in the low melting electrolytes based on potassium cryolite, Light Met., 2008, p. 505.
  16. Shtefanyuk, Yu., Mann, V., Pingin, V., Vinogradov, D., Zaikov, Yu., Tkacheva, O., Nikolaev, A., and Suzdaltsev, A., Production of Al-Sc alloy by electrolysis of cryolite-scandium oxide melts, Light Met., 2015, p. 589.
  17. Napalkov, V.I. and Makhov, S.V., Alloying and Modification of Mg and Al, Moscow: MISIS, 2002.
  18. Babaeva, E.P. and Bukhalova G.A., A system from Na, K, and Sc, Zh. Neorg. Khim., 1965, vol. 10, p. 1455.