Examples



mdbootstrap.com



 
Статья
2018

Electrode Materials Based on Porous Silicon with Platinum Nanoparticles for Chemical Current Sources


N. A. YashtulovN. A. Yashtulov, M. V. LebedevaM. V. Lebedeva, A. V. RagutkinA. V. Ragutkin, N. K. ZaitsevN. K. Zaitsev
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427218020167
Abstract / Full Text

Composites on porous silicon with platinum nanoparticles were prepared with the aim of developing structural materials for electrochemical power sources. The size and shape of the nanoparticles in the silicon matrix were examined by atomic force and high-resolution transmission electron microscopy. The catalytic activity of the nanomaterials in hydrogen oxidation and oxygen reduction was evaluated. The models based on the composite electrodes prepared were tested under the conditions of operation of hydrogen–air fuel cells.

Author information
  • Moscow Technological University (Institute of Fine Chemical Technologies), Moscow, 119454, RussiaN. A. Yashtulov, M. V. Lebedeva, A. V. Ragutkin & N. K. Zaitsev
References
  1. Wang, M., Liu, L., and Wang, X., Sens. Actuators B, 2017, vol. 253, pp. 621–629.
  2. Kuleshov, V.N., Kuleshov, N.V., Dovbysh, S.A., et al., Russ. J. Appl. Chem., 2017, vol. 90, no. 3, pp. 389–392.
  3. Smirnov, K.S., Yashtulov, N.A., Kuz’micheva, G.M., and Zhorin, V.A., Russ. J. Appl. Chem., 2011, vol. 84, no. 3, pp. 1744–1747.
  4. Kobayashi, M.A., Suzuki, T., and Hayase, M., J. Power Sources, 2014, vol. 267, no. 1, pp. 622–628.
  5. Yacou, C., Ayral, A., Giroir-Fendler, A., et al., Micropor. Mesopor. Mater., 2009, vol. 126, no. 3, pp. 222–227.
  6. Yashtulov, N.A., Zenchenko, V.O., and Kuleshov, N.V., and Flid, V.R., Russ. Chem. Bull., 2016, vol. 65, no. 10, pp. 2369–2374.
  7. Canham, L., Handbook of Porous Silicon, Springer, 2014.
  8. Leung, D.Y.C. and Xuan, J., Micro & Nano-Engineering of Fuel Cells, CRC, 2015.
  9. Yashtulov, N.A., Patrikeev, L.N., Zenchenko, V.O., et al., Nanotechnol. Russ., 2015, vol. 10, nos. 11–12, pp. 910–916.
  10. Munoz-Noval, A., Fukami, K., Koyama, A., et al., Electrochem. Commun., 2016, vol. 71, pp. 9–12.
  11. Yashtulov, N.A., Fine Chem. Technol., 2011, vol. 6, no. 3, pp. 87–90.
  12. Yashtulov, N.A., Zenchenko, V.O., and Lebedeva, M.V., Russ. Chem. Bull., 2016, vol. 65, no. 1, pp. 133–138.
  13. Adawyia, J.H., Alwan, M.A., and Allaa, A.J., Micropor. Mesopor. Mater., 2016, vol. 227, pp. 152–160.
  14. Nechitailov, A.A. and Astrova, E.V., Int. Sci. J. Altern. Energy Ecol., 2007, no. 2, pp. 66–71.
  15. Guerrini, E. and Trasatti, S., Russ. J. Electrochem., 2006, vol. 42, no. 10, pp. 1017–1025.
  16. Andersen, S.M. and Larsen, M.J., J. Electroanal. Chem., 2017, vol. 791, pp. 175–184.
  17. Kouassi, S., Gautier, G., Thery, J., et al., J. Power Sources, 2012, vol. 216, pp. 15–21.
  18. Su, H., Xu, Q., Chong, J., et al., J. Power Sources, 2017, vol. 341, pp. 302–308.