Scale-Up Synthesis and Characterization of Epoxyphenolics Based Pyrolysis Carbons as Highly-Performed Anodes for Li-Ion Batteries

 Chuanzhang Ge Chuanzhang Ge , Zhenghua Fan Zhenghua Fan , Long Shen Long Shen , Yongmin Qiao Yongmin Qiao , Licheng Ling Licheng Ling , Jianming Wang Jianming Wang
Российский электрохимический журнал
Abstract / Full Text

A scalable synthesis of unique pyrolysis carbons from phosphorus-doped epoxyphenolics (EPN) through a facile curing and pyrolysis process is reported. The obtained carbons with a high pyrolysis yield of ca. 48% are investigated by SEM, TEM, XRD, Raman and nitrogen adsorption, and evaluated as anode for LIBs. The results show that the nanocrystal structure, proportion of defect sites and porosity (nanovoids) of the obtained carbons are highly dependent on pyrolysis temperature, thus affecting their electrochemical properties. The EPN carbon pyrolyzed at 900°C (EPN900) delivers the largest reversible capacity of nearly 420 mA h g–1 at 0.1 C, which is higher than the theoretical capacity of graphite, mainly resulting from lithium-ions insertion into the turbostratic nanosheets and absorption on defect sites. While the EPN carbon pyrolyzed at 2800°C (EPN2800) exhibits a balanced lithium storage performance with relatively large reversible capacity of 343 mA h g–1, high initial coulombic efficiency (~86%), and superior cycling performance (299 mA h g–1 after 100 cycles at 0.3 C). This work provides a feasible solution for the large-scale preparation of high performance anode material and deepens the high-value utilization of the staple epoxy product.

Author information
  • Department of Chemistry, Zhejiang University, 310027, Hangzhou, China

    Chuanzhang Ge & Jianming Wang

  • Department of Research and Development, Shanghai Shanshan Technology Co., Ltd., 201209, Shanghai, China

    Chuanzhang Ge, Zhenghua Fan, Long Shen & Yongmin Qiao

  • Department of Research and Development, Ningbo Shanshan New Material Science and Technology Co., Ltd., 315177, Ningbo, Zhejiang, China

    Chuanzhang Ge, Zhenghua Fan, Long Shen & Yongmin Qiao

  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China

    Licheng Ling

  1. Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., and Ding, Y., Progress in electrical energy storage system: a critical review, Prog. Nat. Sci., 2009, vol. 19, p. 291.
  2. Larcher, D. and Tarascon, J.M., Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 2015, vol. 7, p. 19.
  3. Scrosati, B. and Garche, J., Lithium batteries: status, prospects and future, J. Power Sources, 2010, vol. 195, p. 2419.
  4. Schipper, F. and Aurbach, D., A brief review: past, present and future of lithium ion batteries, Russ. J. Electrochem., 2016, vol. 52, p. 1095.
  5. Lu, J., Chen, Z., Pan, F., Cui, Y., and Amine, K., High-performance anode materials for rechargeable lithium-ion batteries, Electrochem. Energy Rev., 2018, vol. 1, p. 1.
  6. Zhang, W.J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 2011, vol. 196, p. 13.
  7. Xiang, H., Zhang, K., Ji, G., Lee, J.Y., Zou, C., Chen, X., and Wu, J., Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability, Carbon, 2011, vol. 49, p. 1787.
  8. Zhang, Y.L., Chen, H., Bai, N.B., Xiang, K.X., and Zhou, W., Preparation and lithium storage performance of silicon and carbon microrods by chemical vapor co-deposition, Russ. J. Electrochem., 2016, vol. 52, p. 181.
  9. Choi, D.I., Lee, J.N., Song, J., Kang, P.H., Park, J.K., and Lee, Y.M., Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes, J. Solid State Electrochem., 2013, vol. 17, p. 2471.
  10. Tran, T.D., Feikert, J.H., Song, X., and Kinoshita, K., Commercial carbonaceous materials as lithium intercalation anodes, J. Electrochem. Soc., 1995, vol. 142, p. 3297.
  11. Hao, Q., Lei, D., Yin, X., Zhang, M., Liu, S., Li, Q., Chen, L., and Wang, T., 3-D mesoporous nano/micro-structured Fe3O4/C as a superior anode material for lithium-ion batteries, J. Solid State Electrochem., 2011, vol. 15, p. 2563.
  12. Qiu, D., Xu, Z., Zheng, M., Zhao, B., Pan, L., Pu, L., and Shi, Y., Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries, J. Solid State Electrochem., 2012, vol. 16, p. 1889.
  13. Baji, D.S., Nair, S.V., and Rai, A.K., Highly porous disk-like shape of Co3O4 as an anode material for lithium ion batteries, J. Solid State Electrochem., 2017, vol. 21, p. 2869.
  14. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J.M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, vol. 407, p. 496.
  15. Wu, Y.P., Rahm, E., and Holze, R., Carbon anode materials for lithium ion batteries, J. Power Sources, 2003, vol. 114, p. 228.
  16. Kumar, T.P., Kumari, T.S.D., and Stephan, M.A., Carbonaceous anode materials for lithium-ion batteries-the road ahead, J. Indian I. Sci., 2012, vol. 89, p. 393.
  17. Yang, X., Li, C., Zhang, G., and Yang, C., Polystyrene-derived carbon with hierarchical macro-meso-microporous structure for high-rate lithium-ion batteries application, J. Mater. Sci., 2015, vol. 50, p. 6649.
  18. Zhao, P.Y., Tang, J.J., and Wang, C.Y., A low-cost attempt to improve electrochemical performances of pitch-based hard carbon anodes in lithium-ion batteries by oxidative stabilization, J. Solid State Electrochem., 2017, vol. 21, p. 555.
  19. Lee, K.T., Lytle, J.C., Ergang, N.S., Oh, S.M., and Stein, A., Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries, Adv. Funct. Mater., 2005, vol. 15, p. 547.
  20. Azuma, H., Imoto, H., Yamada, S., and Sekai, K., Advanced carbon anode materials for lithium ion cells, J. Power Sources, 1999, vol. 81, p. 1.
  21. Liu, Y., Xue, J.S., Zheng, T., and Dahn, J.R., Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 1996, vol. 34, p. 193.
  22. Liu, T., Luo, R., Yoon, S.H., and Mochida, I., Effect of vacuum carbonization treatment on the irreversible capacity of hard carbon prepared from biomass material, Mater. Lett., 2010, vol. 64, p. 74.
  23. Stephan, A.M., Kumar, T.P., Ramesh, R., Thomas, S., Jeong, S.K., and Nahm, K.S., Pyrolitic carbon from biomass precursors as anode materials for lithium batteries, Mater. Sci. Eng. A, 2006, vol. 430, p. 132.
  24. Buiel, E., George, A.E., and Dahn, J.R., On the reduction of lithium insertion capacity in hard-carbon anode materials with increasing heat-treatment temperature, J. Electrochem. Soc., 1998, vol. 145, p. 2252.
  25. Schönfelder, H.H., Kitoh, K., and Nemoto, H., Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons, J. Power Sources, 1997, vol. 68, p. 258.
  26. Ni, J., Huang, Y., and Gao, L., A high-performance hard carbon for Li-ion batteries and supercapacitors application, J. Power Sources, 2013, vol. 223, p. 306.
  27. Zheng, T., Zhong, Q., and Dahn, J.R., High-capacity carbons prepared from phenolic resin for anodes of lithium-ion batteries, J. Electrochem. Soc., 1995, vol. 142, p. L211.
  28. Wu, C.S., Liu, Y.L., Chiu, Y.C., and Chiu, Y.S., Thermal stability of epoxy resins containing flame retardant components: an evaluation with thermogravimetric analysis, Polym. Degrad. Stab., 2002, vol. 78, p. 41.
  29. Liu, Y.L., Hsiue, G.H., Chiu, Y.S., Jeng, R.J., and Ma, C., Synthesis and flame-retardant properties of phosphorus-containing polymers based on (4-hydroxystyrene), J. Appl. Polym. Sci., 1996, vol. 59, p. 1619.
  30. Liu, Y.L., Flame-retardant epoxy resins from novel phosphorus-containing novolac, Polymer, 2001, vol. 42, p. 3445.
  31. Choi, D.I., Lee, J.N., Song, J., Kang, P.H., Park, J.K., and Lee, Y.M., Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes, J. Solid State Electrochem., 2013, vol. 17, p. 2471.
  32. Zheng, T., Xue, J.S., and Dahn, J.R., Lithium insertion in hydrogen-containing carbonaceous materials, Chem. Mater., 1996, vol. 8, p. 389.
  33. Shi, H., Barker, J., Saidi, M.Y., and Koksbang, R., Structure and lithium intercalation properties of synthetic and natural graphite, J. Electrochem. Soc., 1996, vol. 143, p. 3466.
  34. Wu, Y.P., Wan, C.R., Jiang, C.Y., Fang, S.B., and Jiang, Y.Y., Mechanism of lithium storage in low temperature carbon, Carbon, 1999, vol. 37, p. 1901.
  35. Wang, Q., Li, H., Chen, L., and Huang, X., Monodispersed hard carbon spherules with uniform nanopores, Carbon, 2001, vol. 39, p. 2211.
  36. Hu, Z., Srinivasan, M.P., and Ni, Y., Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon, 2001, vol. 39, p. 877.
  37. Imamura, R., Matsui, K., Takeda, S., Ozaki, J., and Oya, A., A new role for phosphorus in graphitization of phenolic resin, Carbon, 1999, vol. 37, p. 261.
  38. Huang, H., Liu, W., and Huang, X., Chen, L., Kelder, E.M., and Schoonman, J., Effect of a rhombohedral phase on lithium intercalation capacity in graphite, Solid State Ionics, 1998, vol. 110, p. 173.
  39. Sun, X., Wang, X., Feng, N., Qiao, L., Li, X., and He, D., A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries, J. Anal. Appl. Pyrol., 2013, vol. 100, p. 181.
  40. Sato, Y., Kikuchi, Y., Nakano, T., Okuno, G., Kobayakawa, K., Kawai, T., and Yokoyama, A., Characteristics of coke carbon modified with mesophase-pitch as a negative electrode for lithium ion batteries, J. Power Sources, 1999, vol. 81, p. 182.
  41. Verma, P., Maire, P., and Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 2010, vol. 55, p. 6332.
  42. Stevens, D.A. and Dahn, J.R., The mechanisms of lithium and sodium insertion in carbon materials, J. Electrochem. Soc., 2001, vol. 148, p. A803.
  43. Qian, J., Qiao, D., Ai, X., Cao, Y., and Yang, H., Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries, Chem. Commun., 2012, vol. 48, p. 8931.
  44. Kolosnitsyn, V.S., Kuzmina, E.V., Karaseva, E.V., and Mochalov, S.E., A study of the electrochemical processes in lithium-sulphur cells by impedance spectroscopy, J. Power Sources, 2011, vol. 196, p. 1478.
  45. Yang, S., Song, H., and Chen, X., Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries, Electrochem. Commun., 2006, vol. 8, p. 137.
  46. Piedboeuf, M.L.C., Léonard, A.F., Deschamps, F.L., and Job, N., Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries, J. Mater. Sci., 2016, vol. 51, p. 4358.